GET THE APP

..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Advanced Materials 2020- Effect of CeO2 Nanoparticles on Interface of Cu/Al2O3 Ceramic Clad Composites

Abstract

YaBo Fu

Cu/Al2O3 ceramic clad composites are widely used in electronic packaging and electrical contacts. However, the conductivity and strength of the interfacial layer are not fit for the demands. So CeO2 nanoparticles 24.3 nm in size, coated on Al2O3 ceramic, promote a novel CeO2–Cu2O–Cu system to improve the interfacial bonded strength. Results show that the atom content of O is increased to approximately 30% with the addition of CeO2 nanoparticles compared with the atom content without CeO2 in the interfacial layer of Cu/Al2O3 ceramic clad composites. CeO2 nanoparticles coated on the surface of Al2O3 ceramics can easily diffuse into the metallic Cu layer. CeO2 nanoparticles can accelerate to form the eutectic liquid of Cu2O–Cu as they have strong functions of storing and releasing O at an Ar pressure of 0.12 MPa. The addition of CeO2 nanoparticles is beneficial for promoting the bonded strength of the Cu/Al2O3 ceramic clad composites. The bonded strength of the interface coated with nanoparticles of CeO2 is increased to 20.8% compared with that without CeO2; moreover, the electric conductivity on the side of metallic Cu is 95% IACS. The study is of great significance for improving properties of Cu/Al2O3 ceramic clad composites.

PDF

Share this article

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward