GET THE APP

..

Journal of Applied & Computational Mathematics

ISSN: 2168-9679

Open Access

Analysis of the Fractional Integrodifferentiability of Power Functions and Hypergeometric Representation

Abstract

Rodrigues FG and Capelas de Oliveira E

In this work we show that it is possible to calculate the fractional integrals and derivatives of order (using the Riemann-Liouville formulation) of power functions (t-*)β with β being any real value, so long as one pays attention to the proper choice of the lower and upper limits according to the original functions domain. We, therefore, obtain valid expressions that are described in terms of function series of the type (t-*)± α+k and we also show that they are related to the famous hypergeometric functions of the Mathematical-Physics.

PDF

Share this article

Google Scholar citation report
Citations: 1282

Journal of Applied & Computational Mathematics received 1282 citations as per Google Scholar report

Journal of Applied & Computational Mathematics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward