GET THE APP

..

Journal of Generalized Lie Theory and Applications

ISSN: 1736-4337

Open Access

A-Algebras Derived from Associative Algebras with a Non-Derivation Differential

Abstract

Kaj Borjeson

Given an associative graded algebra equipped with a degree +1 differential Δ we define an A-structure that measures the failure of Δ to be a derivation. This can be seen as a non-commutative analog of generalized BValgebras. In that spirit we introduce a notion of associative order for the operator Δ and prove that it satisfies properties similar to the commutative case. In particular when it has associative order 2 the new product is a strictly associative product of degree +1 and there is compatibility between the products, similar to ordinary BV-algebras. We consider several examples of structures obtained in this way. In particular we obtain an A-structure on the bar complex of an A-algebra that is strictly associative if the original algebra is strictly associative. We also introduce strictly associative degree +1 products for any degree +1 action on a graded algebra. Moreover, an A-structure is constructed on the Hochschild cocomplex of an associative algebra with a non-degenerate inner product by using Connes’ B-operator.

PDF

Share this article

arrow_upward arrow_upward