In the realm of biomedical research, nanoparticles have emerged as powerful tools with the potential to revolutionize diagnostics, imaging, drug delivery and therapy. Their unique physicochemical properties make them versatile candidates for various applications, offering unprecedented opportunities for advancing healthcare. However, navigating the challenges associated with their design, synthesis and implementation in biological systems is crucial to realizing their full potential. This article explores the diverse biomedical applications of nanoparticles, highlighting the challenges faced and the promising opportunities on the horizon. Nanoparticles play a pivotal role in diagnostic imaging techniques, offering enhanced contrast and improved sensitivity. Quantum dots, gold nanoparticles and magnetic nanoparticles, among others, have been employed to improve the resolution of imaging modalities such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and fluorescence imaging. These advancements enable early detection and precise localization of diseases, contributing to more effective treatment strategies. One of the most promising applications of nanoparticles in biomedicine is drug delivery.
HTML PDFShare this article
Journal of Nanosciences: Current Research received 387 citations as per Google Scholar report