GET THE APP

..

Global Journal of Technology and Optimization

ISSN: 2229-8711

Open Access

Calculation of Critical Distance in Faulted Meshed Power System

Abstract

Hedaya Alasooly

Faults studies form an important part of power system analysis. The problem consists of determining bus voltages and line currents during various types of faults. If the fault location is known, the problem is easy to solve. But if the fault location is unknown, the problem will become more complex. The problem of fault location has been studied deeply for transmission lines due its importance in the power system. Different methods for sags prediction have been developed. The most used are “critical distance” and “fault positions”. The critical distance method is based on the concept of potential divider, which is correctly and easily applicable to a radial network. The extension of this method to large meshed networks has been discussed but yet non of the existing researches could provide proper solution for the problem. In this paper, an elegant, analytical method is developed to calculate the critical distance of a three-phase fault on transmission line that will cause certain voltage dip at a bus in meshed power system. The method is based in Gauss-Seidel iteration. The proposed method is tested on 6-bus transmission network and the results showed significant advantages of the proposed method .

PDF

Share this article

Google Scholar citation report
Citations: 664

Global Journal of Technology and Optimization received 664 citations as per Google Scholar report

Global Journal of Technology and Optimization peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward