Andrea Brown, Sanjay Kumar and Paul B Tchounwou
Cisplatin (cis-diammine-dichloro-platinum II) was initially discovered to prevent the growth of Escherichia coli and was further recognized for its anti-neoplastic and cytotoxic effects on cancer cells. Administered intravenously to humans, cisplatin is used as first-line chemotherapy treatment for patients diagnosed with various types of malignancies, such as leukemia, lymphomas, breast, testicular, ovarian, head and neck, and cervical cancers, and sarcomas. Once cisplatin enters the cell it exerts its cytotoxic effect by losing one chloride ligand, binding to DNA to form intra-strand DNA adducts, and inhibiting DNA synthesis and cell growth. The DNA lesions formed from cisplatin-induced DNA damage activate DNA repair response via NER (nuclear excision repair system) by halting cisplatin-induced cell death by activation of ATM (ataxia telangiectasia mutated) pathway. Although treatment has been shown to be effective, many patients experience relapse due to drug resistance. As a result, other platinum compounds such as oxaliplatin and carboplatin have since been used and have shown some levels of effectiveness. In this review, the clinical applications of cisplatin are discussed with a special emphasis on its use in cancer chemotherapy.
PDFShare this article
Cancer Science & Therapy received 3968 citations as per Google Scholar report