GET THE APP

..

Cancer Science & Therapy

ISSN: 1948-5956

Open Access

Combination Treatment with Apricoxib and IL-27 Enhances Inhibition of Epithelial-Mesenchymal Transition in Human Lung Cancer Cells through a STAT1 Dominant Pathway

Abstract

Mi-Heon Lee, Puja Kachroo, Paul C Pagano, Jane Yanagawa, Gerald Wang, Tonya C Walser, Kostyantyn Krysan, Sherven Sharma, Maie St. John, Steven M Dubinett and Jay M Lee

Background: The cyclooxygenase 2 (COX-2) pathway has been implicated in the molecular pathogenesis of many malignancies, including lung cancer. Apricoxib, a selective COX-2 inhibitor, has been described to inhibit epithelial-mesenchymal transition (EMT) in human malignancies. The mechanism by which apricoxib may alter the tumor microenvironment by affecting EMT through other important signaling pathways is poorly defined. IL-27 has been shown to have anti-tumor activity and our recent study showed that IL-27 inhibited EMT through a STAT1 dominant pathway.

Objective: The purpose of this study is to investigate the role of apricoxib combined with IL-27 in inhibiting lung carcinogenesis by modulation of EMT through STAT signaling.

Methods and Results: Western blot analysis revealed that IL-27 stimulation of human non-small cell lung cancer (NSCLC) cell lines results in STAT1 and STAT3 activation, decreased Snail protein and mesenchymal markers (N-cadherin and vimentin) and a concomitant increase in expression of epithelial markers (E-cadherin, β-and γ-catenins), and inhibition of cell migration. The combination of apricoxib and IL-27 resulted in augmentation of STAT1 activation. However, IL-27 mediated STAT3 activation was decreased by the addition of apricoxib. STAT1 siRNA was used to determine the involvement of STAT1 pathway in the enhanced inhibition of EMT and cell migration by the combined IL-27 and apricoxib treatment. Pretreatment of cells with STAT1 siRNA inhibited the effect of combined IL-27 and apricoxib in the activation of STAT1 and STAT3. In addition, the augmented expression of epithelial markers, decreased expression mesenchymal markers, and inhibited cell migration by the combination treatment were also inhibited by STAT1 siRNA, suggesting that the STAT1 pathway is important in the enhanced effect from the combination treatment.

Conclusion: Combined apricoxib and IL-27 has an enhanced effect in inhibition of epithelial-mesenchymal transition and cell migration in human lung cancer cells through a STAT1 dominant pathway.

PDF

Share this article

Google Scholar citation report
Citations: 5332

Cancer Science & Therapy received 5332 citations as per Google Scholar report

Cancer Science & Therapy peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward