GET THE APP

..

Journal of Textile Science & Engineering

ISSN: 2165-8064

Open Access

Design and Development of Composites Based on Basalt/ Aramid Fibers for High Temperature Applications

Abstract

P. Thangeswaran*, P. Chandra Kumar, R.R. Nagul Prasad and S. Gowtham

Composite materials are typical engineering materials that are designed and produced for a variety of purposes in consumer products, the marine and oil sectors, sports goods, aircraft parts, and automotive components. The global market for composite materials is expanding due to the use of lightweight components. Steel and aluminum were replaced with composite materials that performed better. This makes the discovery of novel materials possible by fusing several components into a composite structure. Although rising nations will create a new reality as they enter the composites fray, the increasing rivalry will result in quickly evolving and complicated marketplaces. The global composite materials industry is growing quickly. Since composite materials have significantly reduced weight, they are utilized for structural applications and parts of all spacecraft and aircraft, from combat planes to the space shuttle and passenger jets to gliders and hot air balloon gondolas. The design of high-performance, cost-effective aircraft will be aided by the creation of next-generation composite materials that are lightweight and resistant to high temperatures. Creating composite materials based on nano filler epoxy resins to create structural aeronautic components that effectively guard against lightning strikes. The preparation of the epoxy matrix involves combining a tetra functional epoxy precursor with a reactive diluent, which lowers the moisture content and speeds up the dispersion of the nano filler. The reactive diluent also proves to be beneficial for improving the curing degree of nano filler epoxy composites. Evaluation of the performance of 100% Basalt, 100% Aramid, and Basalt and Aramid fabric follows development and testing of the relative mechanical characteristics. Using finite element analysis, epoxy hybrid composites are employed in aerospace applications and are compared to other composite materials now available for usage in passenger aircraft.

HTML PDF

Share this article

Google Scholar citation report
Citations: 1008

Journal of Textile Science & Engineering received 1008 citations as per Google Scholar report

Journal of Textile Science & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward