GET THE APP

..

Journal of Applied & Computational Mathematics

ISSN: 2168-9679

Open Access

Design Neural Network to Solve Singular Perturbation Problems

Abstract

Tawfiq LNM and Al-Abrahemee KMM

The aim of this paper is to design neural network to present a method to solve Singular perturbation problems (SPP) by using network having one hidden layer with 5 hidden units (neurons) and one linear output unit, the sigmoid activation of each hidden units is tansigmoid. The neural network trained by the back propagation with different algorithms such as quasi-Newton, Levenberg-Marquardt, and Bayesian Regulation. Finally the results of numerical experiments are compared with the exact solution in illustrative examples to confirm the accuracy and efficiency of the presented scheme.

PDF

Share this article

Google Scholar citation report
Citations: 1282

Journal of Applied & Computational Mathematics received 1282 citations as per Google Scholar report

Journal of Applied & Computational Mathematics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward