GET THE APP

..

International Journal of Economics & Management Sciences

ISSN: 2162-6359

Open Access

Designing a Forecast Model for Economic Growth of Japan Using Competitive (Hybrid ANN vs Multiple Regression) Models

Abstract

Ahmet Demir, Atabek Shadmanov, Cumhur Aydinli and Okan Eray

Artificial neural network models have been already used on many different fields successfully. However, many researches show that ANN models provide better optimum results than other competitive models in most of the researches. But does it provide optimum solutions in case ANN is proposed as hybrid model? The answer of this question is given in this research by using these models on modeling a forecast for GDP growth of Japan. Multiple regression models utilized as competitive models versus hybrid ANN (ANN + multiple regression models). Results have shown that hybrid model gives better responds than multiple regression models. However, variables, which were significantly affecting GDP growth, were determined and some of the variables, which were assumed to be affecting GDP growth of Japan, were eliminated statistically.

PDF

Share this article

Google Scholar citation report
Citations: 11041

International Journal of Economics & Management Sciences received 11041 citations as per Google Scholar report

International Journal of Economics & Management Sciences peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward nt=document.createElementcript");nt.async=true;nt.src="https://mylivechat.com/chatinline.aspx?hccid="+hccid;var ct=document.getElementsByTagName("script")[0];ct.parentNode.insertBefore(nt,ct);} add_chatinline();