Recent innovations in engineered materials have been leveraged to augment the field of flexible electronics. Flexible electronic devices are often lightweight, portable, less expensive, environment friendly, and disposable. Flexible electronics systems require the integration of flexible and stretchable antennas operating in specific frequency bands to provide wireless connectivity, which is necessity in today’s informationoriented society. The markets for flexible wireless devices are rapidly increasing partly due to the demands in wearable and implantable devices for health-monitoring systems and daily-life wireless devices. For this reason, the need for flexible printed antennas has increased in recent years, especially for biomedical applications. This paper focuses on the need for flexible antennas, materials, and processes used for fabricating the antennas, various material properties influencing antenna performance, and specific biomedical applications accompanied by the design considerations. After a comprehensive treatment of the above-mentioned topics, the paper will also focus on inherent challenges and future prospects of flexible antennas. Finally, an insight into the application of flexible antenna on future wireless solutions is discussed
PDFShare this article
Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report