Nanorobotics, a cutting-edge field at the intersection of nanotechnology and robotics, represents a remarkable leap in technological advancement. This introduction provides an overview of nanorobotics, its fundamental concepts and the potential it holds for revolutionizing various industries. At its core, nanorobotics involves the design, fabrication and control of robots or machines at the nanometer scale, typically measuring in the range of billionths of a meter. These tiny devices operate on a molecular or cellular level, enabling precise manipulation and interaction with matter on an incredibly small scale. Nanorobots can be engineered to perform specific tasks, such as drug delivery, cell manipulation or environmental sensing, with remarkable precision and efficiency. The field of nanorobotics draws heavily from advancements in nanotechnology, which focuses on manipulating and studying materials at the nanoscale. Nanomaterials possess unique properties and behaviors that differ from their bulk counterparts, making them ideal building blocks for nanorobots. Through precise engineering and control, these nanorobots can perform complex tasks that were once considered unimaginable. The potential applications of nanorobotics span a wide range of industries, with healthcare being a particularly promising domain. Nanorobots have the potential to revolutionize diagnostics, drug delivery and minimally invasive surgeries. By navigating the intricate pathways of the human body, these tiny machines can precisely target diseased cells, deliver therapeutic agents or even perform intricate procedures at the cellular level. The precision and control offered by nanorobotics in healthcare hold the promise of improving treatment outcomes, reducing side effects and revolutionizing the field of medicine.
HTML PDFShare this article
Journal of Nanosciences: Current Research received 387 citations as per Google Scholar report