Tubular hydroforming, the process which uses high pressure to form desired complex shape quickly and easily is the future of automotive industry and is quickly becoming a worthy challenger to the conventional metal stamping and welding. The growing demand for light weight parts in the various fields like automotive, aircraft and aerospace industries have increased the scope for tubular hydroforming in the last few years. The primary advantages of the process are improvement in structural stiffness and crash behavior due to lack of welds and reduced cost assembly.
Hydroforming application demands a clear understanding of material process property relationships. Design, material selection, manufacturing and processing of tubes for this particular application remains critical. Proper understanding of material properties and its forming behavior is the basic necessity for material selection. The effect of material properties on hydroforming process of tubes was investigated. Experimental and FEA studies on free expansion of tubes have been carried out in different materials and materials were ranked based on the suitability for hydroforming. The effect of strain rate on formability of steel sheets was discussed.
PDFShare this article
Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report