GET THE APP

..

Global Journal of Technology and Optimization

ISSN: 2229-8711

Open Access

Free Vibration Analysis of Single-Walled Carbon Nanotubes Based on the Continuum Finite Element Method

Abstract

Chandan Mungra and Jeffrey F. Webb

This paper presents a continuum finite element mechanics approach to model the vibration behaviours of single-walled carbon nanotubes (SWCNTs) of varying lengths, aspect ratios, chiralities, boundary conditions, axial loads and with initial strain applied. The results are in good agreement with the open literature and show that resonance-based carbon nanotubes sensors have the potential to meet the high level performance requirements inherent of many sensor based applications such as mass detectors, biomedical sensors, monitoring for metal deposition and chemical reactions amongst others. Currently, the sensitivity of many electromechanical transducers used for these applications have reached their respective theoretical limit. The merit of carbon nanotubes is that, due to their miniature dimensional structures, the sensitivity of these sensor based applications is vastly improved.

PDF

Share this article

Google Scholar citation report
Citations: 664

Global Journal of Technology and Optimization received 664 citations as per Google Scholar report

Global Journal of Technology and Optimization peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward