Chandan Mungra and Jeffrey F. Webb
This paper presents a continuum finite element mechanics approach to model the vibration behaviours of single-walled carbon nanotubes (SWCNTs) of varying lengths, aspect ratios, chiralities, boundary conditions, axial loads and with initial strain applied. The results are in good agreement with the open literature and show that resonance-based carbon nanotubes sensors have the potential to meet the high level performance requirements inherent of many sensor based applications such as mass detectors, biomedical sensors, monitoring for metal deposition and chemical reactions amongst others. Currently, the sensitivity of many electromechanical transducers used for these applications have reached their respective theoretical limit. The merit of carbon nanotubes is that, due to their miniature dimensional structures, the sensitivity of these sensor based applications is vastly improved.
PDFShare this article
Global Journal of Technology and Optimization received 847 citations as per Google Scholar report