GET THE APP

..

Journal of Applied & Computational Mathematics

ISSN: 2168-9679

Open Access

High-order Accurate Numerical Methods for Solving the Space Fractional Advection-dispersion Equation

Abstract

Fenga L, Zhuangb P, Liu F and Turnera I

In this paper, we consider a type of space fractional advection-dispersion equation, which is obtained from the classical advection-diffusion equation by replacing the spatial derivatives with a generalized derivative of fractional order. Firstly, we utilize the modified weighted and shifted Grunwald difference operators to approximate the Riemann-Liouville fractional derivatives and present the finite volume method. Specifically, we discuss the Crank-Nicolson scheme and solve it in matrix form. Secondly, we prove that the scheme is unconditionally stable and convergent with the accuracy of O(τ2 + h2). Furthermore, we apply an extrapolation method to improve the convergence order, which can be O(τ4 + h4). Finally, two numerical examples are given to show the effectiveness of the numerical method, and the results are in excellent agreement with the theoretical analysis.

PDF

Share this article

Google Scholar citation report
Citations: 1282

Journal of Applied & Computational Mathematics received 1282 citations as per Google Scholar report

Journal of Applied & Computational Mathematics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward