GET THE APP

..

Journal of Computer Science & Systems Biology

ISSN: 0974-7230

Open Access

Homology Modelling and Docking Studies of Human α2-Adrenergic Receptor Subtypes

Abstract

Archana Jayaraman, Kaiser Jamil and Kavita K Kakarala

α2-adrenergic receptors play a key role in the regulation of sympathetic system, neurotransmitter release, blood pressure and intraocular pressure. Although α2-adrenergic receptors mediate a number of physiological functions in vivo and have great therapeutic potential, the absence of crystal structure of α2-adrenergic receptor subtypes is a major hindrance in the drug design efforts. The therapeutic efficacy of the available drugs is not selective for subtype specificity (α2a, α2b and α2c) leading to unwanted side effects. We used Homology modelling and docking studies to understand and analyze the residues important for agonist and antagonist binding. We have also analyzed binding site volume, and the residue variations which may play important role in ligand binding. We have identified residues through our modelling and docking studies, which would be critical in giving subtype specificity and may help in the development of future subtype-selective drugs.

PDF

Share this article

Google Scholar citation report
Citations: 2279

Journal of Computer Science & Systems Biology received 2279 citations as per Google Scholar report

Journal of Computer Science & Systems Biology peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward