Fahimeh Abrinaei
A homemade Copper Vapor Laser (CVL) operating at 510 nm (green) and 578 nm (yellow) outputs was applied to vaporize the Mg metal target in the acetone liquid medium. The Mg plate surface was ablated under a 10 kHz repetition rate and maximum pulse energy of 3 mJ and 35 ns pulse duration. Structural, morphological, optical, and chemical-bond properties of synthesized Mg and MgO nanoparticles were investigated using the X-ray diffraction (XRD) analysis; scanning electron microscopy (SEM) observations, UV-VIS absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR) analysis, respectively. The XRD results confirmed the formation of both Mg and MgO nanoparticles. The crystallite size and the strain of final powder were estimated about 57 nm and 0.017 from XRD data calculated using the Williamson-Hall method. The Mg/MgO ratio was also calculated to be about 67% according to Alexander & Klug formula. The chemical bands of products were correctly identified using the FTIR characterization. The SEM images revealed the presence of spherical and plateletlike structures in a range of 50-80 nm in diameter that confirmed the XRD results. UV-VIS absorption spectrum of Mg/MgO nanoparticles synthesized by laser ablation of Mg target in acetone shows a broad peak at about 417 nm attributed to the plasmon absorption band at this wavelength. The derivative method was applied to measure the Eg equal to 2.3 eV for Mg/MgO nanoparticles synthesized in acetone medium under CVL ablation.
PDFShare this article
Journal of Lasers, Optics & Photonics received 279 citations as per Google Scholar report