Ricardo Cordero-Soto , Erwin Suazo , and Sergei K. Suslov
We consider several models of the damped oscillators in nonrelativistic quantum me-chanics in a framework of a general approach to the dynamics of the time-dependent Schr•odinger equation with variable quadratic Hamiltonians. The Green functions are explicitly found in terms of elementary functions and the corresponding gauge trans-formations are discussed. The factorization technique is applied to the case of a shifted harmonic oscillator. The time evolution of the expectation values of the energy-related operators is determined for two models of the quantum damped oscillators under con-sideration. The classical equations of motion for the damped oscillations are derived for the corresponding expectation values of the position operator.
PDFShare this article
Physical Mathematics received 686 citations as per Google Scholar report