Nanocells, tiny cellular structures operating at the nanoscale, have emerged as a ground breaking technology with significant potential across various industries. Leveraging the principles of nanotechnology, nanocells are engineered with synthetic materials, encapsulating functional components to mimic the functions of natural cells. This article explores the structure, function, and applications of nanocells, highlighting their revolutionary impact in medicine, electronics, energy and environmental remediation. In the field of medicine, nanocells offer precise drug delivery systems, enabling targeted therapy with reduced side effects. Their potential in cancer treatment includes targeted drug delivery and real-time monitoring of treatment progress. Nanocells also find applications in electronics, contributing to advanced energy storage systems and enhancing data processing capabilities. Moreover, their unique properties make them valuable in environmental applications, such as pollutant removal from water and air. Despite their immense potential, challenges related to safety, scalability and precise engineering need to be addressed for widespread adoption. Looking ahead, the integration of nanocells with cutting-edge technologies holds promise for transformative solutions to complex problems. With on-going research and development, nanocells are poised to shape the future of cellular technology, opening up new frontiers of innovation and discovery.
HTML PDFShare this article
Journal of Nanosciences: Current Research received 387 citations as per Google Scholar report