GET THE APP

..

Industrial Engineering & Management

ISSN: 2169-0316

Open Access

Non-Gaussian Random Generators in Bacteria Foraging Algorithm for Multiobjective Optimization

Abstract

Ganesan T, Vasant P and Elamvazuthi I

Random generators or stochastic engines are a key component in the structure of metaheuristic algorithms. This work investigates the effects of non-Gaussian stochastic engines on the performance of metaheuristics when solving a real-world optimization problem. In this work, the bacteria foraging algorithm (BFA) was employed in tandem with four random generators (stochastic engines). The stochastic engines operate using the Weibull distribution, Gamma distribution, Gaussian distribution and a chaotic mechanism. The two non-Gaussian distributions are the Weibull and Gamma distributions. In this work, the approaches developed were implemented on the real-world multi-objective resin bonded sand mould problem. The Pareto frontiers obtained were benchmarked using two metrics; the hyper volume indicator (HVI) and the proposed Average Explorative Rate (AER) metric. Detail discussions from various perspectives on the effects of non-Gaussian random generators in metaheuristics are provided.

PDF

Share this article

Google Scholar citation report
Citations: 739

Industrial Engineering & Management received 739 citations as per Google Scholar report

Industrial Engineering & Management peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward