Wang C, Zhang S, Zhang Z, Zeng M and Yuji S
The performances of syringyl lignin degradation by using Fenton and UV/Fenton processes were investigated in a self-designed cylindrical reactor. Many factors including pH, dosage of H2O2, concentration of Fe2+ initial concentration of syringyl lignin, reaction time and UV irradiation were optimized to reach the removal efficiency of syringyl lignin up to 87.5%. Specifically the optimum reactor time was 60 min, dosage of H2O2 was two times of its theoretical quantity and molar ratio of [Fe2+]/[H2O2] was 1:50 at pH 3. Furthermore, introducing UV-light into the Fenton system significantly improved the decomposition of syringyl lignin with the removal efficiency of 100% in first 30 min. In addition, the degradation mechanism of syringyl lignin by Fenton process was discussed in detail by using UV-visible spectroscopyand TOC analysis. It was found that syringyl lignin was oxidized by electron transfer of complex intermediates which contained high valence iron in homogeneous Fenton system.
PDFShare this article
Journal of Environmental Analytical Chemistry received 1781 citations as per Google Scholar report