Organic electronics have emerged as a promising field in the realm of optoelectronics, offering a wide range of applications from flexible displays to solar cells and wearable technology. Unlike traditional inorganic semiconductors, organic electronics utilize organic materials, such as polymers and small molecules, to harness the unique properties of organic compounds for electronic and optoelectronic devices. Organic electronics have gained considerable attention due to their lightweight, flexibility, and potential for low-cost manufacturing. Polymers, particularly conjugated polymers, have been pivotal in the development of organic electronic devices. Conjugated polymers, composed of repeating conjugated units, have unique electronic properties that make them ideal candidates for optoelectronic applications. Some notable examples of conjugated polymers include polythiophenes, polythienylenes, and polyfluorenes.
HTML PDFShare this article
Chemical Sciences Journal received 912 citations as per Google Scholar report