GET THE APP

..

Chemical Sciences Journal

ISSN: 2150-3494

Open Access

Physical Properties of Pure and Nano Ag Doped Liquid Crystalline Compounds Containing 1,3,4-Oxadizole Unit

Abstract

Naser JA, Himdan TA, Latif IA, Mohammed YI and Al-Dujaili AH

Dielectric properties and other physical properties such as electrical conductivity (AC) and relaxation time or activation energy have been studied for two systems pure LC [V]6,6, [V]7,6, [V]8,6, [V]6,7, [V]7,7 and [V]8,7 and their doped with silver nanoparticles. The results show the increasing in real dielectric permittivity Ã?ŽÃ?­ with increasing length terminal chain. So the real dielectric permittivity increasing with raising temperature. To compare between the values of (400) Hz and (4000) Hz we observe these values at the low frequency are larger than that in high frequency. Generally, one can see that the doping of Ag nano particles effectively reduced the permittivity of the LC materials with its large electric dipole moment. The electrical conductivity σ value for pure LC samples in general increases with increasing temperature. So we observed increasing of electrical conductivity values at high frequency. The time scale is discussed in terms of the Arrhenius plot. Generally, with increasing the temperature the time period that spends by molecules at the transition state will increase. The activation energy Ea values show the increase in the activation energy to the doped systems.

PDF

Share this article

Google Scholar citation report
Citations: 912

Chemical Sciences Journal received 912 citations as per Google Scholar report

Chemical Sciences Journal peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward