GET THE APP

..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Polarization Dependent Reflectivity and Transmission for Cd1-Xznxte/GaAs(001) Epifilms in the Far-Infrared and Near-Infrared to Ultraviolet Region

Abstract

Talwar DN and Becla P

The results of a comprehensive experimental and theoretical study is reported to empathize the optical properties of binary GaAs, ZnTe, CdTe and ternary Cd1-xZnxTe (CZT) alloys in the two energy regions: (i) far-infrared (FIR), and (ii) near-infrared (NIR) to ultraviolet (UV). A high resolution Fourier transform infrared spectrometer is used to assess the FIR response of GaAs, ZnTe, CdTe and CZT alloys in the entire composition 1.0 ≥ x ≥ 0 range. Accurate model dielectric functions are established appositely to extort the optical constants of the binary materials. The simulated dielectric functions εÃ?¯Ã?â?¬Ã?Â¥(ω) and refractive indices n~(ω) are meticulously appraised in the FIR → NIR → UV energy range by comparing them against the existing spectroscopic FTIR and ellipsometry data. These outcomes are expended eloquently for evaluating the polarization dependent reflectivity R(λ) and transmission T(λ) spectra of ultrathin CZT/GaAs (001) epifilms. A reasonably accurate assessment of the CZT film thickness by reflectivity study has offered a credible testimony for characterizing any semiconducting epitaxially grown nanostructured materials of technological importance.

PDF

Share this article

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward