GET THE APP

..

Journal of Biometrics & Biostatistics

ISSN: 2155-6180

Open Access

Prediction of Outcomes in Victims with Severe Trauma by Statistical Models

Abstract

Juraj Šteno, Valeriy Boyko, Petro Zamiatin, Nadiya Dubrovina, Russell Gerrard, Peter Labas, Olexander Gurov, Olena Kozyreva, Dmytro Hladkykh, Yuliia Tkachenko, Denis Zamiatin and Viktorija Borodina

Background: There are different approaches to the assessment of the severity of trauma in a victim and to the provision of specialized health care. Some of them are based on the development of scales and logistic models, using expert systems or statistical methods, to assess the severity of injury and the probability of a particular outcome. This article presents the results of a study on the feasibility of developing and applying various statistical models in order to predict the outcome in the case of different types of trauma, based on data on the status of victims with severe trauma. Patients and methods: We present selected information about 373 victims, admitted and treated at the Department of Traumatic Shock of the GI «V.T. Zaycev Kharkiv Research Institute of General and Emergency Surgery» of NAMS of Ukraine; the records, which relate to patients with severe and combined trauma, were made between 1985 and 2015. The initial database contained 263 victims who had positive outcomes (survived), while 110 had fatal outcomes. Most of the patients presented with an open trauma (285 cases), then there were 80 cases with a closed injury and only 8 cases with a combined injury. Results: To estimate the probability of the outcome for various types of trauma we have developed a predictive model, based on a logistic relationship. Categorical variables, indicating the presence or absence of various types of trauma, were used in the model. Information about the eventual outcome for a given victim with the indicated type of trauma was used as the dependent variable. The logit model which we obtained has a high predictive accuracy in predicting positive outcomes. Thus, based on the a posteriori analysis, 92% of cases in which victims survived were correctly recognized by the model. In view of the fact that abdominal trauma is the commonest of all trauma mechanisms, we constructed a predictive model to estimate the probability of various outcomes in the case of abdominal trauma or injury to certain organs of the abdominal cavity.       Linear discriminant functions were developed by us and used for the classification of possible outcomes depending on the condition of the victim and the resuscitation measures carried out. The model presented has a high predictive accuracy: on the basis of a posteriori analysis using data of discriminant functions, correct conclusions were drawn in 90% of cases when there was a positive outcome, and in 75% of cases when the outcome was fatal. Conclusion: We conclude that it is reasonable to use the statistical model developed, along with other qualitative and quantitative methods of prognostic determination of outcomes for victims with severe injuries. As different models have different predictive accuracy and require the provision of different information, it is necessary to use a sufficiently large number of techniques to derive accurate predictions and to choose the right tactics for diagnosis and treatment.

PDF

Share this article

Google Scholar citation report
Citations: 3496

Journal of Biometrics & Biostatistics received 3496 citations as per Google Scholar report

Journal of Biometrics & Biostatistics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward