Kalra A*, Lowe A, Al-Jumaily AM
This work presents a 2D quantification of strain field caused due to the motion artifact in an Electrocardiogram (ECG) measurement. The objective of this work is to estimate the skin stretch induced motion artifact in an ECG signal. An ECG measurement was obtained from a subject for 10 seconds using standard Ag/AgCl electrodes by continuously moving the arm back and forth during the measurement. A Poly dimethyl siloxane (PDMS) patch of dimensions 40 mm × 45 mm × 0.254 mm was adhered to the arm during motion. The movement of the PDMS patch during the ECG measurement was recorded in a video and motion artifact was quantified in terms of normal and shear strain components εx, εy and εxy. These values were derived using feature detection and Euclidean distance feature mapping. The motion artifact was eliminated from the ECG signal using Extended Kalman Filtering (EKF).
PDFShare this article
Biosensors & Bioelectronics received 6207 citations as per Google Scholar report