GET THE APP

..

Bioceramics Development and Applications

ISSN: 2090-5025

Open Access

Regenerated Cellulose Fiber and Film Immobilized with Lysozyme

Abstract

Jonathan Y Chen, Liangfeng Sun and Vincent Edwards J

The present work reports an initial engineering approach for fabricating lysozyme-bound regenerated cellulose fiber and film. Glycine-esterified cotton was dissolved in an ionic liquid solvent 1–Butyl–3–methylimidazolium Chloride (BMIMCl) in which lysozyme was activated and covalently attached to cotton cellulose through an enzymatic conjugation between its carboxyl groups and glycine cellulose’s amino groups. The resulting solution was extruded for fiber/film formation in a water bath. After performing a bicinchoninic acid (BCA) protein assay, quantity of attached lysozyme to cellulose fiber/film was evaluated. The study exhibited that a synthesis of lysozyme conjugation on cellulose in BMIMCl could be completed in a control manor, resulting in a cellulose solution suitable for fiber/film production. It was also found that lysozyme could be successfully immobilized onto the cellulose fiber and film regenerated from solution spinning with a reasonable amount ranging from 197.6 to 343.7 μg/mL.mg.

PDF

Share this article

Google Scholar citation report
Citations: 1050

Bioceramics Development and Applications received 1050 citations as per Google Scholar report

Indexed In

 
arrow_upward arrow_upward