Birandra Kumar Sinha
Because of the emergence of drug-resistant tumor cells, successful treatments of human malignancies have been difficult to achieve in the clinic. In spite of various approaches to overcome multi drug resistance, it has remained challenging and elusive. It is, therefore, necessary to define and understand the mechanisms of drug-induced tumor cell killing for the future development of anticancer agents and for rationally designed combination chemotherapies. The clinically active antitumor drugs, topotecan, doxorubicin, etoposide, and procarbazine are currently used for the treatment of human tumors. Therefore, a great deal research has been carried to understand mechanisms of actions of these agents both in the laboratory and in the clinic. These drugs are also extensively metabolized in tumor cells to various reactive species and generate oxygen free radical species (ROS) that initiate lipid peroxidation and induce DNA damage. However, the roles of ROS in the mechanism of cytotoxicity remain unappreciated in the clinic. In addition to ROS, various reactive nitrogen species (RNS) are also formed in tumor cells and in vivo. However, the importance of RNS in cancer treatment is not clear and has remained poorly defined. This review discusses the current understanding of the formation and the significance of ROS and RNS in the mechanisms of various clinically active anticancer drugs.
PDFShare this article
Cancer Science & Therapy received 5332 citations as per Google Scholar report