Sam Efromovich and Ekaterina Smirnova
The paper describes the theory, methods and application of statistical analysis of large-p-small-n cross-correlation matrices arising in fMRI studies of neuroplasticity, which is the ability of the brain to recognize neural pathways based on new experience and change in learning. Traditionally these studies are based on averaging images over large areas in right and left hemispheres and then finding a single cross-correlation function. It is proposed to conduct such an analysis based on a voxel-to-voxel level which immediately yields large cross-correlation matrices. Furthermore, the matrices have an interesting property to have both sparse and dense rows and columns. Main steps in solving the problem are: (i) treat observations, available for a single voxel, as a nonparametric regression; (ii) use a wavelet transform and then work with empirical wavelet coefficients; (iii) develop the theory and methods of adaptive simultaneous confidence intervals and adaptive rate-minimax thresholding estimation for the matrices. The developed methods are illustrated via analysis of fMRI experiments and the results allow us not only conclude that during fMRI experiments there is a change in cross-correlation between left and right hemispheres (the fact well known in the literature), but that we can also enrich our understanding how neural pathways are activated and then remain activated in timeon a single voxel-to-voxel level.
PDFShare this article
Journal of Biometrics & Biostatistics received 3496 citations as per Google Scholar report