GET THE APP

..

Advances in Robotics & Automation

ISSN: 2168-9695

Open Access

Stochastic Geometry Analysis of Throughput for Wireless Body Area Networks

Abstract

Yinglong Wang, Ruixia Liu*, Minglei Shu and Changfang Chen

Wireless Body Area Network (WBAN) coexistence is a very challenging problem, resulting in very strong interference among them, which seriously affects the reliability of communication. The interference is the main performance-limiting factor in wireless networks coexistence, and therefore it is crucial to mitigated. The goal of this paper is to decrease inter-WBANs interference and to increase the transmission success probability or throughput. One of the main determinants of the interference is the network geometry distribution. In this paper, the impact of channel sensing range to IEEE 802.15.4-based coexisting WBANs is analyzed and is optimized according to the nearest node’s distance. In addition, we model the system adopting the stochastic geometry Poisson point process and analyze the impact of guard zone size to networks performance. Furthermore, the throughput efficiently achieves higher through optimizing the size of guard zone. Theoretical analysis and simulation results show that the reasonable setting of the protection area can improve effectively the system throughput, and the guard zone radius has an optimal value, which can make the throughput of the network to reach the maximum value. The energy and spectral efficiency, moreover, have been improved.

PDF

Share this article

Google Scholar citation report
Citations: 1127

Advances in Robotics & Automation received 1127 citations as per Google Scholar report

Advances in Robotics & Automation peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward