GET THE APP

..

Journal of Civil and Environmental Engineering

ISSN: 2165-784X

Open Access

Structural Strengthening/Repair of Reinforced Concrete (RC) Beams by Different Fiber-Reinforced Cementitious Materials - A State-of-the-Art Review

Abstract

Sifatullah Bahij, Safiullah Omary*, Francoise Feugeas and Amanullah Faqiri

In the last few decades, premature deterioration of reinforced concrete (RC) structures has become a serious problem because of severe environmental actions, overloading, design faults, and materials deficiencies. Therefore, repair and strengthening of RC elements in existing structures are very important to extend their service life. There are numerous methods for retrofitting and strengthening of RC structural components such as; steel plate bonding, external pre-stressing, section enlargement, fiber-reinforced polymer (FRP) wrapping, and so on. Although these modifications can successfully improve the load-bearing capacity of the beams, they are still prone to corrosion damage resulting in failure of the strengthened elements. Therefore, many researchers used cementitious materials due to its low-cost, corrosion resistance, and resulted in the improvement of the tensile and fatigue behaviors. Different types of cementitious materials such as; fiber-reinforced concrete (FRC), high performance concrete (HPC), high strength concrete (HSC), ultra-high performance concrete (UHPC), steel fiber-reinforced high strength lightweight self-compacting concrete (SHLSCC), fabrics reinforced cementitious material (FRCM) and so on have been used to strengthen structural elements. This paper summarized previously published research papers concerning the structural behaviors of RC beams strengthened by different cementitious materials. Shear behaviors, flexural characteristics, torsional properties, deflection, cracking propagation, and twisting angle of the strengthened beams are explained in the present paper. Finally, proper methods are proposed for strengthening RC beams under various loading conditions.

HTML PDF

Share this article

Google Scholar citation report
Citations: 1798

Journal of Civil and Environmental Engineering received 1798 citations as per Google Scholar report

Journal of Civil and Environmental Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward