GET THE APP

..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

The Linearized Fourier Thermal Model Applied to Au Nanoparticles 1D and 2D Lattices under Intense Nanoseconds Laser Irradiation Pulses

Abstract

Mihai Oane, Ion N Mihăilescu and Bogdan Sava

Very recently, new exact analytical solutions of the Fourier heat equation have been proposed by Zhukovsky. Since the Zhukovsky solutions are very powerful we applied the Zhukovsky formalism to a specific experimental situation, i.e. to a one dimensional (1D) lattice composed of Au nanoparticles of radius 20 nm in water media, under 20 ns laser pulse irradiation. In addition, we calculated the thermal field in the 2D spatial dimensions case for a single Au nanoparticle in water irradiated under the same conditions but with a different fluence. These results exemplify how the new Zhukovsky formalism contributes to the real physical view of such laser thermalized processes. This new theoretical approach could be easily extended to laser processing in general, and laser additive manufacturing in special.

PDF

Share this article

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward