Joshua Partheepan and Emily M. Hunt*
Renewable power generation can reduce the dependence on fossil fuels while minimizing greenhouse gas emissions from electric power generation. However, most renewable energy sources are naturally occurring which makes them seasonal and generally unpredictable over time. With more countries trending toward renewable power by 2050, it is imperative that technologies are developed which can utilize and optimize the storage and distribution of this type of power. Hydrogen energy storage is becoming increasingly popular due to its versatility. It is considered an energy carrier like electricity and can be generated and stored in large quantities and for long periods of time. Hydrogen can be derived from water, biomass, and other technologies and can generate electric power using fuel cells and through combustion. This study investigates a novel combined cycle configuration which is thermodynamically analyzed to identify its potential to adapt steam from a hydrogen oxygen steam generator. A thermodynamic analysis on the system is performed using Engineering Equation Solver from F Chart Software. Results show that the oxygen hydrogen fueled combined cycle excels in the specific power ratio, as this cycle was able to achieve the lowest pressure values at the highest points for both thermal loading and pressure loading. This is a major advantage since the thermal loading on some of the power cycles are much higher that what is currently in use, thus reducing it even by a smaller percentage is significant. The oxygen hydrogen fueled combine cycle reduced the specific power by 78%, pressure at the most thermal loaded point by 157%, and pressure at the most pressure loaded element by 10% when compared to other common cycles.
HTML PDFShare this article
Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report