Addisu Tilahun
Barley is one of the most highly cultivated crops in Ethiopia. The assessment of genetic diversity using quantitative traits is of prime importance in many contexts, particularly in differentiating well defined populations. The aim of this study was to select superior malt barley genotypes that meet the yield and quality standards for malting purposes. Forty nine malt barley genotypes including two checks were tested at koga of west Gojjam in Ethiopia under irrigation in a 7 × 7 simple lattice designs with two replications during off season of 2013. Using estimated D² values 49 genotypes were grouped into nine clusters with maximum genotypes (20) in cluster I and (14) in cluster II. Principal component analysis for malt barley genotypes revealed that the first four principal components accounted for more than 68.3% of the variation explained by explanatory variables. Agronomic characters having relatively higher value in the first four principal components had more contribution to the total diversity and they were responsible for the differentiation of the nine clusters. Nonetheless, considering the tremendous variability observed among the genotypes, further testing of these genotypes in different localities is suggested.
PDFShare this article
Molecular Biology: Open Access received 607 citations as per Google Scholar report