GET THE APP

..

Journal of Applied & Computational Mathematics

ISSN: 2168-9679

Open Access

Two-stage Particle Swarm Optimization Algorithm for the Time Dependent Alternative Vehicle Routing Problem

Abstract

Hsiao-Fan Wang and Yen-Yi Lee

This study considered a Time Dependent Alternative Vehicle Routing Problem (TDAVRP) in a multi-graph network (TDAVRP) and was formulated into a Mixed Integer Programming model. Due to its NP nature, an algorithm based on Particle Swarm Optimization (PSO) with local improvement was developed to speed up the solution procedure. By using different sets of Solomon’s benchmark problems and continuous travel time functions, the accuracy and efficiency of the two-stage PSO were evaluated. The computational results showed that the proposed algorithm is capable of deriving optimal or near optimal solutions in a short period of time when the size of the problems are small and is able to obtain feasible solutions within a reasonable time when solving the large problems which cannot be solved by ILOG CPLEX. In addition, Sensitivity Analysis was conducted to evaluate the performances of the parameters. The results indicated that the number of customers is a sensitive parameter and will influence the required number of vehicles, value of violations and percentage of alternative edges in the solution sets.

PDF

Share this article

Google Scholar citation report
Citations: 1282

Journal of Applied & Computational Mathematics received 1282 citations as per Google Scholar report

Journal of Applied & Computational Mathematics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward