GET THE APP

..

Biosensors & Bioelectronics

ISSN: 2155-6210

Open Access

Volume 5, Issue 4 (2014)

Research Article Pages: 1 - 4

Self-Gravitating Stability of a Fluid Cylinder Embedded in a Bounded Liquid, Pervaded by Magnetic Field, for all Symmetric and Asymmetric Perturbation Modes

Hamdy M Barakat

DOI: 10.4172/2155-6210.1000234

The self-gravitating stability of a fluid cylinder embedded in a bounded liquid, pervaded by magnetic field, for all symmetric and asymmetric perturbation modes has been discussed. The problem is formulated and the (MHD) basic equations are solved A general eigen-value relation is derived studied analytically and results are confirmed numerically. The stability of a fluid cylinder under the action of self-gravitating, inertia, and electromagnetic forces is developed. The electromagnetic force has stabilizing and destabilizing influences in the axisymmetric modes. For very high intensity of magnetic field the model is completely stable for all values of wavelengths. This phenomenon is interest, academically and during the geological drilling in the crust of the earth as we have superposed gas-oil layer mixture fluids. The stability behavior of the model comes after destabilizing behavior of the model when it be reduced and suppressed.

Google Scholar citation report
Citations: 6207

Biosensors & Bioelectronics received 6207 citations as per Google Scholar report

Biosensors & Bioelectronics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward