Zafar Iqbal Khan, Kanwal Sultana, Kafeel Ahmad, Shahzad Akhtar, Shaista Jabeen, Shamayem Aslam*, Aima Iram Batool, Hafsa Memona, Shahida Parveen, Muhammad Nadeem and Mobeen Fatima
DOI: 10.37421/2380-2391.2022.9.384
Arsenic considered as in the concentration of the soil, water and cereals of Sargodha, Punjab, Pakistan. Three different sites of Sargodha that were selected for sampling, these sites were irrigated with 3 different water resources. Site one irrigated with municipal sewage, the site two irrigated with canal water and the site three irrigated with ground water. The site 1 in which municipal sewage have high level of the heavy metals. For soil maximum PLI (Pollution load index) was perceived in Zea mays (3.02 mg/kg) and the minimum PLI concentration was in Linum usitatissimum (1.83 mg/kg). For soil maximum BCF (Bio-concentration factor) was detected in Pennisetum glaucum (0.38 mg/kg) and the minimum BCF concentration was prescribed in Zea mays at site 1. For soil the maximum Enrichment factor (EF) was prescribed in Triticum aestivum (100.8 mg/kg) and the minimum EF concentration was detected in Pennisetum glaucum (10.41mg/kg) at site one. For soil the maximum DIM (Daily intake of metals) was prescribed in Zea mays (1.46 mg/kg) and the minimum DIM concentration was detected in Linum usitatissimum (0.00106 mg/kg) at site 1. For soil the maximum Health risk index (HRI) was prescribed in Pennisetum glaucum (6.12 mg/kg) and the minimum HRI concentration was detected in Zea mays (0.048 mg/kg) at site 1. In water, the Arsenic value was higher than standard value and also fewer in soil and cereal crops. The DIM value, BCF, PLI, EF, and HRI were higher than standard limit.
Kafeel Ahmad, Zafar Iqbal Khan, Shamayem Aslam*, Sahar Monsoor, Shahzad Akhtar, Aima Iram Batool, Hafsa Memona, Muhammad Nadeem, Asma Ashfaq and Hazoor Ahmad Shad
DOI: 10.37421/2380-2391.2022.9.383
Three Tahsil; Jhanwarian, Sahiwal and Silanwaali of district Sargodha, Pakistan were selected for this project. Municipal waste water was used for irrigation to grow forages and fodder. The main target of this study comprises the assessment of Lead and Zinc in fodder and forage crops. Furthermore, the soil in which the forages are grown up was also appraised to acquire pollution load index. The concentration of Lead and Zinc was assessed in cows nurturing on the fodder being irrigated by wastewater. Concentrations of Lead and Zinc in fodder samples were found in the range from 9.50 mg kg-1 to 14.14 mg kg-1 and 16.49 mg kg-1 and 8.60 mg kg-1 respectively. The allowable limit level for Lead in plants is 3.0 ppm while the concentration of Lead in this study were found more than that limit (Allen, 1989). On the other hand, the concentration of Zinc was found within limit as prescribed by WHO; 50 mg/kg (2018). The concentration of Lead in wastewater was found in wide-ranging between 0.09-0.45 mg/L and zinc 3.41-5.83 mg/L. The levels of Lead in water were found to be higher than the WWF-recommended safe limit (0.10) (2007). Concentration of Lead and Zinc in soil varied between 10.11 mg kg-1 to 13.85 mg kg-1 and 27.76 mg kg-1 to 37.25 mg kg-1 respectively. In the blood of cows, the mean concentrations of Lead were found to be 0.136-1.918 mg kg-1 and concentration of Zinc was 0.136-1.918 mg kg-1. Pollution load index value of Lead and Zinc ranged between 1.25 to 1.69 and 1.25-1.699 respectively. Bio concentration factor of Lead and Zinc were found to be in the range from 0.82 to 1.12 and 0.25 to 0.54 respectively. DIM of Lead and Zinc ranges between 0.01615-0.024 and 0.0145-0.028 respectively. (2.25-3.0) and (0.024-0.016) values were measured for enrichment factor of Lead and Health risk index separately. Enrichment factor and health risk index of Zinc ranges between (0.1100-0.1811) and (0.0465-0.0934) respectively.
Journal of Environmental Analytical Chemistry received 1781 citations as per Google Scholar report