GET THE APP

..

Journal of Biometrics & Biostatistics

ISSN: 2155-6180

Open Access

Mingqi Wu


Tanzania

Publications
  • Research Article
    Population SAMC vs SAMC: Convergence and Applications to Gene Selection Problems
    Author(s): Mingqi Wu and Faming LiangMingqi Wu and Faming Liang

    The Bayesian model selection approach has been adopted by more and more people when analyzing a large data. However, it is known that the reversible jump MCMC (RJMCMC) algorithm, which is perhaps the most popular MCMC algorithm for Bayesian model selection, is prone to get trapped into local modes when the model space is complex. The stochastic approximation Monte Carlo (SAMC) algorithm essentially overcomes the local trap problem suffered by conventional MCMC algorithms by introducing a self-adjusting mechanism based on the past samples. In this paper, we propose a population SAMC (Pop-SAMC) algorithm, which works on a population of SAMC chains and can make use of crossover operators from genetic algorithms to further improve its efficiency. Under mild conditions, we show the convergence of this algorithm. Comparing to the single chain SAMC algorithm, Pop-SAMC provides a more efficie.. Read More»
    DOI: 10.4172/2155-6180.S1-002

    Abstract PDF

Relevant Topics

Google Scholar citation report
Citations: 3254

Journal of Biometrics & Biostatistics received 3254 citations as per Google Scholar report

Journal of Biometrics & Biostatistics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward