GET THE APP

..

Neurological Disorders

ISSN: 2329-6895

Open Access

Xiaojun Cao

Department of Computer Science and Engineering, Huizhou University, China

Publications
  • Research Article   
    Epileptic seizure prediction from multivariate sequential signals using Multidimensional convolution network
    Author(s): Xiaoyan Wei*, Xiaojun Cao, Yi Zhou and Zhang Zhen

    Background: The ability to predict coming seizures will improve the quality of life of patients with epilepsy. Analysis of brain electrical activity using multivariate sequential signals can be used to predict seizures. Methods: Seizure prediction can be regarded as a classification problem between interictal and preictal EEG signals. In this work, hospital multivariate sequential EEG signals were transformed into multidimensional input, multidimensional convolutional neural network models were constructed to predict seizures several channels segments were extracted from the interictal and preictal time duration and fed them to the proposed deep learning models. Results: The average accuracy of multidimensional deep network model for multi-channel EEG data is about 94%, the average sensitivity is 88.47%, and t.. Read More»
    DOI: 10.4172/2329-6895.10.10.517

    Abstract HTML PDF

Google Scholar citation report
Citations: 1343

Neurological Disorders received 1343 citations as per Google Scholar report

Neurological Disorders peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward