Aim of this paper is software package utilized towards a practical application by considering problem of natural draught hyperbolic cooling towers. This paper deals with the study of hyperbolic cooling tower of 120 m high above ground level. This cooling tower has been analyzed for wind load using ANSYS by assuming fixity at the shell base. For this analysis a single case of the tower with alternative ‘I’ and ‘V’ supports is taken up. The wind load on this cooling towers has been calculated in the form of pressure by using the circumferentially distributed design wind pressure coefficients as given in IS: 11504-1985 code along with the design wind pressures at different levels as per IS: 875 (Part 3)-1987 code. The analysis has been carried out using and 4-noded shell element. The vertical distribution of membrane forces along and the circumferential distributions at base, throat and top levels have been studied for the cooling tower.
Nancy Mittal, Diwakar Velu
The continuing growth of population density in urban areas around the world has placed greater emphasis on the utilization and development of underground space to meet the increasing demands of the city. Due to limited land space available in downtown areas, many cities in the world are also embarking on integration of major construction projects of metro infrastructure, commercial developments and residential estates etc., to meet the growing demand of infrastructure. Construction project in an urban area necessitates the involvement of internal and external stakeholders in the planning phase of the project and requires managing the expectations of the stakeholders throughout the project. This paper will present a case study to depict the ways for managing the stakeholders affected due to the construction project in an urban environment. Stakeholder management in construction projects which are of national importance is even more challenging and complex than private projects. To make the project successful, it is very important to identify all the stakeholders and engage them in early phases of project. The very task of managing the different priorities and requirements of internal and external stakeholder groups at various stages of project is tedious in itself. This paper will describe the different strategies and present 2 case studies to manage the expectations of various stakeholders during the construction works in a densely populated area.
P Sivakumar*, D Prabhakaran and M Thirumarimurugan
The world produces 50 million tons of electronic and electrical waste (e-waste) per year, according to a recent UN report, but only 20% is formally recycled. The rest ends up in landfill, or is recycled informally in developing nations. E-waste recycling market in India is predominantly controlled by unorganized sector due to absence of stringent laws and policy framework. Electronics products in the country are reaching their end of life sooner than expected, which has created immense pressure on the government to come up with appropriate laws to promote e-waste recycling and management. Most electronics that are improperly thrown away contain some form of harmful materials such as beryllium, cadmium, mercury and lead. These materials might be trace elements, but when added up in volume, the threat to the environment is significant. However electronic waste also contains fair percentage of precious metals like Cu, Ag, Au, Pt etc. These metals can be recovered from e-waste at cheaper cost than from the usual ores. Several techniques are used to recover precious metals like copper, silver and gold. This paper deals with the collection and segregation of precious metal rich e-waste scrap and leaches zinc and Aluminium effectively by adopting the technique namely Electrodeposition. The composition of Zinc and Aluminium present in the resultant leached product from each technique is analyzed by EDS. A manual comparison of purity, yield percentage, energy consumption will be tabulated and optimization for the three processes will be simulated using Response Surface Methods (RSM) in design-expert software v.11.
Journal of Civil and Environmental Engineering received 1798 citations as per Google Scholar report