Synthesis, crystal structures and quantum chemical calculations of novel phosphonium salt-1, 5-diphospha-3-phosphonia-tricyclo pentane cations

Mutasem Z Bani-Fwaz and Ahmed E Fazary
King Khalid University, KSA

TThis work deals with reactions between the kinetically stable 2 -tert-butyl- $1 \lambda^{3}$-phospha-alkyne, $\mathrm{tBu} \mathrm{C}=\mathrm{P}$, and various halodiorganylphosphines $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$. The isolated ionic salts with the 2,4 -di-tert-butyl-3,3-diorganyl- $1 \lambda 3,5 \lambda 3$-diphospha-3-phosphonia-tricyclo [2.1.0.02,5]-pentane cations, $\left[\mathrm{R}^{2} \mathrm{C}^{2 t} \mathrm{Bu}{ }^{2} \mathrm{P}^{3}\right] \boxtimes(\mathrm{R}=$ ethyl, isopropyl, methyl, phenyl), were characterized by spectroscopic methods; additionally, the results of X-ray structure analyses were confirmed by quantum chemical calculations which were performed on the hydrogen substituted phosphonium and phosphenium cations. As for the phosphonium cation $\left(\left[\mathrm{H}_{2} \mathrm{P}(\mathrm{CH})_{2} \mathrm{P}^{2}\right] \boxtimes\right)$ generated from our work the conventional trigonal bipyramidal framework of point group $\mathrm{C}_{2 \mathrm{v}}$ represents the absolute minimum on the potential energy surface. To our surprise this situation is followed by a second one which has to be attributed to the so-called housene structure of point group C_{1} showing a somewhat higher energy value $+77.9 \mathrm{~kJ} / \mathrm{mol}$. Quite a reverse situation is encountered for the phosphenium cation $\left[\mathrm{P}(\mathrm{CH})_{2} \mathrm{P}_{2}\right] \boxtimes$. Here the pseudo square-based pyramidal nido structure of point group $C_{2 v}$ known from Russell's tetrachloroaluminate(III) compound is found to be the only minimum on the potential energy surface. A phosphenium cation with a trigonal bipyramidal framework of point group $\mathrm{C}_{2 \mathrm{v}}$ is higher in energy only by $35.7 \mathrm{~kJ} / \mathrm{mol}$ but due to one imaginary frequency it has to be considered the structure of a transition state. The opened housene structure corresponds neither to a minimum nor to a saddle point on the potential energy surface. In the pseudo square-based pyramidal nido structure (point group $\mathrm{C}_{2 v}$) of the phosphenium cation $\left[\mathrm{P}(\mathrm{CH})_{2} \mathrm{P}_{2}\right] \boxtimes$ the s-orbital and all p-orbitals of the apical four-coordinate phosphorus atom are used to form two P-C and two P-P bonds. Further addition of two hydrogen atoms to entail the phosphonium cation $\left[\mathrm{H}_{2} \mathrm{P}(\mathrm{CH})_{2} \mathrm{P}_{2}\right]$ of point group symmetry C_{2} not only increases the coordination number of the apical phosphorus atom to six but also requires two electrons and two orbitals for $\mathrm{P}-\mathrm{H}$ bonding.

