conferenceseries.com

9th European Chemistry Congress

June 17-18, 2019 | Berlin, Germany

Zinc Ferrum energy storage chemistries with high efficiency and long cycling life

Zheng Chang

Shanghai Institute of Ceramics - CAS, China

Energy storage systems with higher energy density and good electrochemical performance are the urgent demand in new energy industry for electric vehicles. Rechargeable aqueous Zn-ion batteries (ZIBs) are particularly attractive owing to the safety, nontoxicity, inexpensiveness and high energy density. Here, we propose a new prototype of liquid Zn-Ferrum batteries (ZFBs) using metal Zinc as anode and aqueous Fe(II/III) redox couple as catholyte. This battery presents excellent electrochemical performance with the capacity of 352 mAh g⁻¹ at an average discharge voltage up to 1.25 V, an energy density of 391 Wh kg⁻¹, a power density of 2.2 kW kg⁻¹ at current density of 2 A g⁻¹, and long cycling life: No evident capacity fading after 5000 cycles. In the case of the ZFBs system, subnanometer pores of CF-N-O enable low self-discharge rate *via* Fe²⁺ and Fe³⁺ adsorption in carbon nanopores, which was achieved without applying an ion exchange membrane. It was testified as a promising energy storage system with high efficiency, energy density, reliability and durability, and it might be a promising application in electric vehicles.

changzheng8910@163.com