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Abstract
Distribution network state estimation is based on distribution network (DN) topology identification (TI). The connection of high-penetration renewable 
energy, on the other hand, makes TI of DN more difficult. This manuscript therefore proposes an active distribution network (ADN) TI method based 
on a one-dimensional convolutional neural network. The characteristics of the nodes are analyzed in light of the sensitivity of node voltage to DN 
topology changes in order to select the key nodes where the distribution network phasor measurement unit (DPMU) should be placed. This can 
save money on investment and make model training less redundant. Using photovoltaic (PV) units and a modified IEEE-33 bus DN, a number of 
tests are carried out. Under limited DPMU measurement, the results demonstrate that the proposed distribution network topology identification 
method can achieve high accuracy TI in ADN.
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Introduction

The topology of DN may change frequently as a result of various events 
like grid reconfiguration, facility maintenance, and failures. A crucial function of 
the distribution network management system (DMS) is the ongoing monitoring 
of the network topology in order to guarantee the control and monitoring of the 
DN. It is critical to ensure that the topology of DN is substantial as the active 
demand response level rises and DN is developed intelligently. As a result, the 
DN TI has attracted more and more attention. The supervisory control and data 
acquisition data system (SCADA) was previously responsible for carrying out 
the topology analysis of DN. Some data, like the node voltage amplitude and 
other data, can be collected by SCADA based on the data of node injection 
power flow. To estimate topology, some academics have proposed the residual 
method and the transfer power flow method [1,2].

Description

The residual method in uses the residual value of the state estimator and 
the DN's real-time measurement to estimate the topology, while the transfer 
power flow method in and use the sensitivity of the transfer power flow to 
estimate the DN's changing topology. However, high-precision sampling data 
are required to support the high-precision TI of DN. In the meantime, access 
to distributed energy resources also complicates its operating environment, 
making the issue more difficult. High-precision TI of DN is made possible by 
the widely used distribution network phasor measurement unit (DPMU) [8]. 
The DPMU's real-time voltage phase angle data are used in to realize the TI 
of DN; however, this approach only takes into account the topology generated 
by the tie switch change in DN. In a topology voting strategy is described. The 
topology with the highest joint probability is selected as the final TI result by 

each DPMU from the set of topology probabilities it provides. In SCADA and 
DPMU collaborate to realize DN's TI. In the nonlinear relationship between DN's 
topology and operating parameters is modeled using the Bayesian network. A 
reliable TI result for DN can be obtained using its TI model. However, the issue 
of DPMU placement is not taken into account by this method [3,4].

This manuscript presents a TI DN method based on DPMU sampling 
data, including voltage power, amplitude, and phase angle, driven by a one-
dimensional convolutional neural network. The sensitivity of node voltage to 
changes in DN topology is used to examine the characteristics of nodes in 
light of the issue of insufficient measurement equipment in DN. In addition, the 
key nodes that will house the DPMU are chosen carefully, which saves money 
and cuts down on model training redundancy. Finally, the photovoltaic (PV) 
unit-simulated IEEE-33 bus network is used to test the viability of the proposed 
TI strategy [5].

The admittance matrix generally defines the topology of the DN, and the 
admittance matrix influences the system's power flow change. As a result, the 
DN's structure and the power flow variable share a particular relationship or 
rule. The remaining information regarding injected power, voltage amplitude, 
and phase angle of partially nodes can be calculated using power flow with 
the assistance of information gathered by SCADA and DPMU in DN. The TI of 
DN will be built upon these data. Branch switches in DN are limited in practical 
engineering. As a result, the number of structural types for a particular DN after 
the change is limited, allowing deep learning and other techniques to fit the 
relationship between DN's measured data and calculated topology [6].

The recent research generally selects nodes that have more adjacent 
nodes when installing DPMU. Additionally, a node's degree can be used to 
describe the number of adjacent nodes. However, there may be some nodes 
in a DN system with many nodes that share the same degree; selecting these 
nodes is a problem that must be resolved. A method for selecting node features 
that takes into account the voltage-topology change sensitivity of the node is 
proposed in this paper. The DPMU is preferentially placed on the node with the 
highest sensitivity out of all nodes with the same degree [7].

In most cases, a TI with fewer features can better meet actual 
requirements. In order to allow the model to be trained with fewer feature 
categories, the sensitivity of the node voltage to the topology change of DN is 
evaluated, and the feature categories are successively reduced in proportion 
to the significance of the sensitivity features. The amplitude and phase angle 
of the node are included in the test. The sensitivity index is then calculated in 
the manner depicted [8,9].

The topology change makes the voltage phase angle fluctuation more 



J Phys Math, Volume 13:11, 2022Halstead F

Page 2 of 2

apparent, as depicted in Figure. As a result, sorting the node sensitivity index 
is based on the voltage phase angle. The best approach is determined by the 
sensitivity of the nodes when the placement of DPMU is determined by the 
degree of nodes. The placement of DPMUs in various numbers of DPMUs 
is carried out in conjunction with the method of the maximum degree and the 
identification effect of the model is depicted [10].

Conclusion

The fact that the proposed model achieves an accuracy of at least 90% 
across a variety of measurement noises demonstrates that the 1DCNN 
approach is capable of successfully achieving the TI of DN. Additionally, it is 
evident that the shallow structure of SVM makes it difficult to extract features 
from data, resulting in a low identification accuracy; While DNN is a deep 
network structure, it has limited feature extraction capabilities, making it less 
accurate than the proposed method for identifying topologies.
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