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Abstract
This paper introduces an AI-powered Knowledge Graph for large forensic data investigations, combining machine learning and deep learning to 
create a sophisticated digital investigation tool. Traditional forensic methods often suffer from a lack of synergy among experts, leading to missed 
insights and delayed judicial processes. Our Knowledge Graph addresses this by autonomously identifying connections between offenders or 
victims and analyzing crime event patterns using machine learning-based knowledge signatures and spatial cascadability metrics.

The paper details the creation of a Knowledge Graph from diverse forensic data, highlighting the challenges of data handling and standardization. 
It showcases the application of this approach in four real-world datasets, demonstrating its effectiveness in forensic reasoning. The results indicate 
that AI-enabled knowledge graphs can significantly enhance digital investigations. Additionally, the use of spectral analysis for examining real-
world interconnections highlights the system’s autonomous capabilities. This AI-driven approach promises more efficient digital investigations and 
could play a crucial role in reducing security breaches in global businesses.
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Introduction
Every day, the field of forensics produces enormous amounts of data from 
several investigations throughout the globe [1,2]. Traditionally the forensic 
investigation process is mostly human-driven as shown in Figure 1 and thus 
cannot cope with next-generation challenges in the domain. Law enforcement 
personnel, researchers and scientists are unable to swiftly sort through data 
in order to find answers to urgent problems while it is in its raw form. New and 
improved digital forensic investigation tools are essential as forensics moves 
into the age of Artificial Intelligence, Machine Learning, and Deep Learning. 
On the other hand, Embedded artificial intelligence will provide enhanced 
opportunities for near real-time collection and analysis of forensic evidence [3,4]. 
Super internet growth and advances in rapid communications technologies, 
coupled with increased bandwidth and the proliferation of telecommunications 
and computing devices are driving exponential growth in the networks as well 
as the information transiting these networks and being stored or archived for 
future use (Figures 1 and 2).

Existing literature suggests that proper mining of digital forensic data has 
resulted in the identification of the culprit in the past [5,6]. For example, the 
famous case of Larry J. Thomas vs the State of Indiana used the culprit’s 
Facebook images to corroborate the evidence that led to the conviction. The 
infamous case of The Craigslist Killer also used Facebook data and emails to 
produce digital evidence to identify the culprit. The BTK Killer case was solved 
based on the mining metadata of a Word document that helped to reveal the 
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Figure 1. Traditional forensics process.

Figure 2. Dierent forensic domains.
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true identity of the killer.

Today, we are living in a digital age where we are generating tons of digital data 
that if required can be used for forensic investigation. For example, geotags 
embedded in les like pictures, videos, etc, and location data from cell towers, 
Wi-Fi connections, etc. can produce ample forensics evidence. One famous 
case study is when a Russian soldier named Alexander Sotkin posted selfies 
on his Instagram account in June 2014. The forensic examination of those 
images revealed geotag metadata and locations that showed the movement of 
the Russian army from its military base to eastern Ukraine and back. Similarly, 
today smart cars collect and store a lot of digital parameters to improve 
customer experience. A hit-and-run case in 2017 was solved using forensic 
analysis of this data. The police performed forensic analysis of data from the 
accused car’s navigation system, infotainment system, telematics system, etc. 
to generate digital evidence that helped them in solving the case.

Currently, criminals are exploring new and faster means of infiltrating and 
exploiting individual and corporate networks, penetrating new security 
systems, and violating both the security and privacy of our society. As law 
enforcement struggles to apprehend and convict these criminals, it is 
increasingly important for forensic investigators to be equipped with new tools 
and mechanisms to identify forensic evidence stored in the networks in near 
real-time. Law enforcement personnel and scholars may now more quickly 
and effectively solve crimes by creating a knowledge graph a visible, linked 
network illustrating the links between current data and knowledge entities as 
shown in Figure 2. Furthermore, in any forensics case, the government or a 
court of law may make better decisions thanks to these nuanced solutions.

Knowledge signature graphs are networks that demonstrate the relationships 
between various items by integrating the information [7,8]. They support 
platforms like Google search, social media websites, streaming media, etc 
with ease that is used by almost everyone. Knowledge graphs offer a wide 
range of applications in forensic science due to their capacity to establish 
complicated and overlapping relationships, such as representing hundreds of 
nodes in a simulated network [9]. When utilized appropriately, they can provide 
information on new target security threats, reveal how hackers and network 
assaults work, or pinpoint the impacts of a particular virus that is introduced 
into the system.

Intelligent digital forensic data
Knowledge graphs can be created using data from various sources, including 
crime scene information, forensic lab, and investigative agencies, court case 
records, criminal databases, databases of software attacks, social media 
proles, journal articles, public repositories, third-party tools, and private and 
experimental data [10,11]. Knowledge graphs should be created with the 
aim in mind to make the greatest use of the available data. This involves 
synchronizing and retrieving information on data sets leveraging sophisticated 
ontologies.

Semantic technology can be used to convert unstructured text into structured 
data, classify it, and extract relationship data. Deeper insights, linkages, and 
a reduction in complexity will be possible as a result. Knowledge graphs 
can improve scientific rigor by implementing domain-specific ontologies 
and employing cross-checked IDs. Stakeholders will have more faith in the 
conclusions since the automated AI process will be made more explainable 
and less of a closed black box.

Making sure data is FAIR, i.e., Findable, Accessible, Interoperable, and 
Reusable is a crucial step in creating datasets for knowledge graphs. The 
tools and instructions used to query the knowledge network will be significantly 
harder in the absence of extensive, standardized, comparable data. Data in 
a knowledge graph may be transferred, precisely defined, and formatted in a 
way that makes it interoperable. This gives graph models a strong foundation.

Discovering the connections in data
Knowledge graphs can continually ingest new data from specified data 
sources, making them a dynamic source of knowledge that may be updated 
in real time or as required. As a result, they can develop based on a semantic 
network of incoming data. Law enforcement officials can respond to queries like 
what entities might be targets for an attacker, which ones are being targeted 
the most, or if an attack might be recycled to hack into another business 
with a similar network pathway by thoroughly mining data and utilizing latent 
knowledge (Figure 3).

Knowledge graphs have a wide range of applications in digital forensics and 
cyber security. Their strength lies in discovering and utilizing connections 
between data and knowledge entities to create solutions but to fully benefit 
from this strategy, sound data practices and reliable sources are required. The 
utilization of data in knowledge graphs can hasten the detection of crimes, 
produce insights or predictions about how an investigation will turn out, and 
eventually hasten the capture of offenders and shield them from further attacks.

Proposed framework
Artificial Intelligence techniques like Named Entity Recognition (NER) [12], 
Natural Language Processing (NLP), and Machine Learning (ML) can be 
used to recognize, comprehend, and connect data to create a knowledge 
graph. Knowledge graphs, also known as triples, depict certain connections 
between data and knowledge items in a form that computers can understand. 
These triples, which specify particular connections between two entities, are 
either automatically derived from existing semantics or taken from them. 
For example, the words bugs, or worms is an error in the programming that 
is causing a glitch or an unexpected problem for the end user, the named 
entity recognition can be used to recognize the terms bugs and worms as a 
programming error and not as an insect. While the submission of evidence 
to existing large language models (LLMs) like ChatGPT remains unfeasible, 
these LLMs can function as auxiliary tools for tasks such as the creation of 
forensic scripts and error validation [13].

Figure 3. Proposed framework architecture of AI-powered knowledge graph.
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Building the knowledge signature graphs
Knowledge graphs may therefore be used to depict, explain, and map complex, 
overlapping relationships. Law enforcement personnel may uncover pertinent 
information and insights more quickly and accurately using this rich model since 
it produces a lot more relevant information than simply keyword-searching 
books. Any knowledge graph needs well-formatted data that is also pertinent 
to the application. To be genuinely successful, data must be maintained 
and sourced wisely. However, without context, research data, study reports, 
photographs, and other writings frequently lack significance, posing a problem 
for computers that need a certain amount of data to begin learning. Figure 
3 illustrates the proposed knowledge graph-based network architecture, two 
major categories of data sources are considered in this framework 1) Social 
media and 2) Police reports and evidence streams.

The data capturing layer contains a data puller engine that inputs real-time data 
from two major categories through a secured Application Program Interface 
(API) developed through data crawlers. A different API is implemented on 
each network media that binds to the data-capturing layer through a set of 
controllers to govern and screen the data. These APIs pull data based on the 
pre-configured timers and are also intelligently configured to pull based on 
the network traffic on social media surfaces. This also includes a separate 
preprocessing data layer that focuses on removing errors and inconsistency 
from the data, missing links, and maintaining the integration of data. Holding to 
valid and quality data is more vital than having a large pool of inefficient data; 
hence, the machine and deep learning models are plugged into this section. 
This framework automatically gathers information from various multimedia 
into the internal structured repository and organizes the data as soon as it 
rests on disks. This process involves different tasks related to image cropping, 
audio cleansing, video segmentation, malware prediction, script injections, and 
extracting logos, weapons, biometric features, and emojis. The framework also 
processes les of different formats, such as audio, video, image, text, etc. les 
that are stored locally in internal repositories.

The next layer is knowledge harnessing is performed using machine and deep 
learning models, where the data are modeled based on AI-powered databases. 
The training on crime scene database and social media data repositories is 
conducted using suitable feature extraction. Further, the regression analysis 
is performed on internal and trained data sets to ensure the quality of the 
machine and deep learning models. A mapping of crime scene data is collated 
with the available social media with a trained data set with combinational data 
patterns. The same is supplied to the prediction model to predict the dissimilar 
data properties. The knowledge learning layer covers the application of 
machine and deep learning techniques and reasons databases to analyze the 
graph data to extract the required information. Here, criminal behavior can be 
modeled using various machine and deep learning algorithms. Additionally, the 
system alerts for abnormal behaviors or patterns that can be modeled using 
various anomaly detection techniques. Thus, it is necessary to train appropriate 

models to obtain high detection rates and ensure a low false positive rate. The 
application layer contains a dashboard that allows users to customize different 
processes related to prediction and crime investigation (Figure 4).

Methodology
Technically creating a knowledge graph involves extracting relevant entities 
from data and representing the relationships between them. Our framework 
includes the following steps.

Entity extraction: The module employs mode-specific tools to recognize 
entities in the evidence. In textual data, named entities that refer to the 
key subjects of a piece of text should be extracted. Named entities include 
names, locations, events, companies, and times. There are various publicly 
available libraries to employ for extracting such named entities from natural 
text, including Stanford NER, spaCy, NLTK, and Polyglot [14]. Extracting 
entities from visual data is achieved by localization techniques that have been 
evolving over the past decades in the field of computer vision employing neural 
architectures such as Vision Transformers (ViTs) and Region-based CNNs 
(R-CNN) [15]. System and network log les also provide useful entities including 
IP addresses, MAC addresses, hostnames, usernames, timestamps, process 
IDs, device names, and location identifiers. Several utilities are available for 
entity extraction from log les such as grep, awk, sed, Microsoft Log Parses, etc.

Relationship extraction: There are two types of relationships within our 
framework. Either two entities are from the same modality where we record an 
intra-domain relationship, or they are from different modalities where we record 
an inter-domain relationship. For example, a company name and the name of 
the owner may be collected as entities with an intra-domain relationship while 
the name of the owner has an inter-domain relationship with their image.

Types of relationships: Two types, contextual and evidence-related. 
Contextual is where George (who was in the incident) lives. Evidence-related 
is the location of George in the incident. Also inter domain or intra-domain.

Knowledge graph construction: Use a graph database or a graph 
representation library in Python (e.g., NetworkX) to construct the knowledge 
graph. Add nodes for each entity and edges for the relationships between 
them.

Query and visualization: Once the knowledge graph is constructed, you can 
query it to retrieve specific information or visualize it to gain insights into the 
relationships between entities.

Explainability
The literature suggests that the AI model’s explainability is an essential criterion 
for its deployment in the real world [16,17]. The AI-powered knowledge graphs 
will incorporate explainability in data as well as AI models as shown in Figure 
4. In data, explainability can be improved with respect to samples, distribution, 
and features. In the model, case-based reasoning (ProtoDash), feature-based 
explanation (LIME, SHAP, etc.) can be used to improve explanations. Finally, 
quantitative metrics like faithfulness, monotonicity, etc., can further improve 
the explainability of AI-powered knowledge graphs.

Adversarial robustness
The literature on other domains, like image classification [18], object 
recognition [19], spam detection [20], malware detection [21], etc., suggests 
that AI models are susceptible to adversarial attacks. The adversary can target 
the AI-powered knowledge system to reduce its performance as illustrated 
in Figure 5. The threat modeling of adversarial attacks against AI-powered 
knowledge systems can be described using adversary’s Goal, Knowledge, and 
Capabilities against the target system. The adversary can design attacks with 
the GOAL to disrupt the integrity, availability, and privacy of the AI system. 
The adversary’s KNOWLEDGE about the target system can be defined 
based on information about the following three parameters (1) dataset, (2) 
feature set, and (3) classification function used to construct the AI system. 
The white-box scenario assumes that the attacker/adversary has complete 
knowledge of all three parameters of the target system. In contrast, the black Figure 4. Explainability in AI-powered knowledge graphs.
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box scenario assumes no knowledge is available about any parameter of the 
target system. The grey-box scenario assumes that the attacker/adversary has 
partial information about the target system. The CAPABILITY can be defined 
based on the adversaries’ ability to influence/modify the test data (exploratory 
influence) or training data (causative influence). Privacy attacks can also be 
developed for model stealing attacks, model inversion attacks, or membership 
interference attacks (Figure 5).

Experimental Results and Discussion

Datasets
Our experiments are conducted on four benchmark anonymized datasets. We 
employ the Stanford Network Analysis Platform (SNAP) [22] real-world dataset 
collection for our forensics framework. The chosen datasets encompass 
a spectrum of key information, ranging from social media friendships to 
cryptocurrency transactions, thereby giving rise to diverse forms of knowledge 
graphs, including both directed and undirected structures.

email-Eu-core [23]. The dataset captures eight hundred days of email 
communication between institution members, representing a temporal network.

CollegeMsg [24]. The dataset consists of private messages exchanged 
within an online social network aliated with the University of California, Irvin, 
representing users’ behavior and interaction.

Stablecoin ERC20 Transactions [25]. The dataset captures cryptocurrency 
transactions which employ the ERC-20 standard within the Ethereum 
blockchain. It captures the transactions of leading stablecoins by market 
capitalization, namely USDT, USDC, DAI, UST, PAX, and additionally, 
WLUNA.

Gowalla [26]. The dataset contains Gowalla friendship and check-in 
information. Over six million check-ins are included in the dataset.

Implementation and metrics
In our empirical investigation, we systematically acquired data from forensic 
datasets to construct a knowledge graph tailored for a specific forensic 
application. This is achieved through the instantiation of a Data-Capturing 
class, dedicated to retrieving pertinent information from databases, and a 
Data-Extraction class, designed to discern and organize the acquired data into 
the resulting knowledge graph. Finally, a Forensics-Tool module analyzes the 
extracted graph to identify specific patterns associated with an incident. The 
Forensics-Tool categorizes the network into multiple node groups, serving as 
an effective method for identifying outliers. It employs the k-means clustering 
algorithm for the forensic task. It is also capable of deriving key characteristics 
of the entire graph, including the highest centrality values.

Results on benchmarks
For clarity, we present a pruned version of the knowledge graphs in the 
manuscript. The email-Eu-core directed and temporal network has a diameter 
of seven and high connectivity (Figures 6 and 7).

Stablecoin ERC20 is a larger dataset and requires more pruning before 
representation (Figure 8).

Within the Gowalla dataset context, we delineate two separate graphs: one 
delineating user friendships Figure 9 and another portraying their approximate 
geo-locational proximities Figure 10. The Gowalla undirected network has 
a diameter of fourteen with a higher rate of leaves. The subsequent graphs 
present the outcomes of clustering obtained through the forensic tool (Figures 
9 and 10).

The forensic module indicates that in the email-Eu network Figure 11, node 
50 has the highest degree centrality of 0.028, node 60 has the highest 
eigenvector centrality of 0.66, and node 46 has the maximum betweenness 
centrality of 0.0003.

Similarly, in the CollegeMsg network Figure 12, node 15 has the highest 
degree centrality of 0.016, node 27 has the highest eigenvector centrality of 

Figure 5. Adversarial robustness in AI-powered knowledge graphs.

Figure 6. Email-Eu-core knowledge graph. Each edge represents an email 
communication between two members.

Figure 7. CollegeMsg knowledge graph. Each edge represents a message 
communication between two members.

Figure 8. Stablecoin ERC20 knowledge graph. Each edge represents a crypto 
transaction.



J Forensic Res, Volume 15:3, 2024Iyengar SS, et al.

Page 5 of 7

0.44, and node 29 has the maximum betweenness centrality of 0.0002.

Within the Stablecoin network Figure 13, node 34 has the pinnacle of degree 
centrality with a value of 0.02, node 50 has the highest eigenvector centrality 
at 0.45, and node 34 has the utmost betweenness centrality of 0.0002. Given 
the uniformity of these metrics across the initial three datasets, our emphasis 
will pivot toward analyzing the outcomes of clustering for more extensive 
forensic analysis. In light of the clustering outcomes, identifiable groups of 
outliers emerge within the datasets. Instances of unexplained outliers, lacking 
justifications such as organizational hierarchy or internal team structures, 
warrant thorough investigation in the event of an incident (Figures 11-13).

In addition to employing a general methodology, context-specific measures 
can prove effective. For instance, after the derivation of a transaction graph 
from Stablecoin ERC20 and the identification of anomalies, a forensic expert 
may establish connections between user pseudonyms and online identities to 
facilitate further investigative procedures [27] (Figures 14 and 15).

Mysteries and challenges
The most astonishing problem in digital forensics is the hidden and untraversed 
challenges that the forensics community has to deal with on a daily basis due 
to outdated tools and isolated data repositories. Hence, due to the limitations 
of the tools and data, proper investigation, reasoning, and prediction cannot 
be performed. Further, the intra-communication of crime databases and 

investigations is not in practice due to various legal compliances; this is 
another setback for digital forensics. A small crime consumes a long time for 
investigation because of the less clarity of the case, as computers, mobiles, 
and network-based crimes are becoming more sophisticated and complex. A 
single clue for a case is insufficient to catch the core of crime as services and 
actions are connected to various flows. The misery of fast-running technology 
is that it creates headloads by introducing dissimilar technology and data 
patterns [28]. Specifically, any investigations based out of the cloud are still 

Figure 9. Gowalla friendship knowledge graph.

Figure 10. Gowalla geo-location proximity knowledge graph.

Figure 11. Email-Eu network after clustering where k=10. Nodes {158, 181} are an 
example of outliers.

Figure 12. Pruned collegemsg network after clustering where k=10. Nodes 16, 7, and 3 
are examples of outliers.

Figure 13. Stablecoin ERC20 network after clustering where k=10. Nodes 18, 136, and 
11 are examples of outliers.

Figure 14. Gowalla friendship network after clustering where k=10. Nodes 82, 135, and 
66 are examples of outliers.

Figure 15. Gowalla geo-location proximity network after clustering where k=3.
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time-consuming and non-compliant as there are foundational practices to 
discover data, action, traces, and actors.

While image forensics has obtained the greatest benefit from employing 
machine learning methods [29], the prime challenges of digital forensics are:

•	 Lack of knowledge in rising technology

•	 Development of standards

•	 Explosion of complexity

•	 Rise of anti-forensics techniques

•	 Legitimacy

•	 Privacy-preserving investigations

•	 Technology diversity

•	 Techno-legal complexities

•	 Lack of specialists and experts

Drawing from the framework and experimental results showcased in the paper, 
it proposes a groundbreaking paradigm shift in addressing the challenge of 
extracting solutions from forensic data, presenting a novel approach to 
unraveling mysteries within this domain.

Conclusion
This paper introduces an innovative framework that utilizes artificial intelligence-
powered knowledge graphs to unravel mysteries within forensic data. Of 
particular significance is its elucidation of a reasoning process applicable to 
the increasingly expansive and complex landscape of multi-modal forensic 
data. The document provides a comprehensive framework for the creation of 
knowledge graphs from forensic data, delving into the intricacies of managing 
and extracting insights from the burgeoning volume of diverse forensic data. 
Additionally, the paper thoroughly explores the challenges associated with 
handling and standardizing various types of forensic data, offering valuable 
insights into overcoming these obstacles in the field of digital forensics.
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