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Introduction
While disease trait information has been used in understanding 

survival of patients, relatively less research has been done on 
incorporating disease trait information into etiologic investigations. In 
this paper, we propose a new pseudo-conditional likelihood approach 
that can handle partially missing disease traits and use it to analyze data 
from the American Cancer Society's Cancer Prevention Study (CPS) 
II Nutrition Cohort [1]. The goal of the data analysis is to investigate 
whether the association between weight gain and risk of breast cancer 
varies among different disease trait subtypes in women not using 
postmenopausal hormones, adjusting for important risk factors. If 
the association of a predictor variable varies across the subtypes, we 
examined how much of this variation is due to each of the disease traits. 
Understanding etiologic heterogeneity" of a risk factor sheds light on 
the pathogenesis of disease [2]. In the CPS-II Nutrition Cohort, there 
are 5 tumor characteristics, including stage (2 levels), histology (3 
levels), estrogen receptor (2 levels), progesterone receptor (2 levels), 
and grade (3 levels), leading to 72 (i.e., 2×3×2×2×3) different disease 
subtypes.

To examine the effect of risk factors on different disease subtypes, 
we consider the polytomous logistic regression, which is commonly 
used for handling multinomial data [3-5]. There are two variants of 
the model: one for nominal and one for ordinal scale outcomes [6], 
and this paper focuses on modeling nominal outcomes. Hence, for 
each disease subtype, we have a set of disease-predictor association/
regression parameters and a set of nuisance intercept parameters. 
The etiologic heterogeneity will be measured via differences among 
the regression parameters across subtypes. The number of regression 
parameters is large due to several disease characteristics (traits) while 
each trait has multiple levels. In this context, a second-stage model was 
proposed to reduce the dimension of the heterogeneity parameters 
when all disease traits are observed [7]. In the CPS-II Nutrition Cohort 
data, the missingness percentages for the five traits are 23.2%, 21.2%, 
0.0%, 30.0%, and 33.6%, respectively. In particular, among the cases, 
approximately 45.5% had at least one missing trait.

While estimation of the heterogeneity parameters was considered 
in the Cox regression model in the presence of partially missing 
disease traits [8], the same issue has not been considered before in 
the context of polytomous logistic model, which will be considered 
in this paper. We propose to estimate the heterogeneity parameters 
using a pseudo-conditional likelihood. We would like to point out the 
distinction between Chatterjee [7] and our approach. Here we adopt 
the the secondstage model in a polytomous logistic regression setup 
in the presence of partially missing disease traits and develop a robust 
method of inference. In particular, Chatterjee [7] did not consider 
the missing data issue. As a result, his pseudo-conditional likelihood 
function was free of the nuisance intercept parameters. In contrast, 
we deal with partially missing disease trait data, and consequently our 
pseudo-conditional likelihood involves the nuisance intercept as well 
as the main log-odds ratio parameters. For estimating these nuisance 
parameters, we use a different type of pseudo-conditional likelihood. 
For handling the large dimension of the nuisance parameters, we adopt 
another second-stage model, and estimate them from another objective 
function. The idea of using two objective functions, one for the main 
parameters of interest and the other for the nuisance parameters, 
was inspired by Goetghebeur and Ryan [9]. Consequently the related 
theory is not a straightforward extension of the theory presented in [7].

Alternative to the proposed approach, one could consider a 
maximum likelihood based inference for the heterogeneity parameters 
using the full likelihood of the data. However, misspecification of the 
model for the intercepts will have less bearing on our inference than on 
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Abstract
In modern cancer epidemiology, diseases are classified based on pathologic and molecular traits, and different 

combinations of these traits give rise to many disease subtypes. The effect of predictor variables can be measured by 
fitting a polytomous logistic model to such data. The differences (heterogeneity) among the relative risk parameters 
associated with subtypes are of great interest to better understand disease etiology. Due to the heterogeneity of the 
relative risk parameters, when a risk factor is changed, the prevalence of one subtype may change more than that of 
another subtype does. Estimation of the heterogeneity parameters is difficult when disease trait information is only 
partially observed and the number of disease subtypes is large. We consider a robust semiparametric approach based 
on the pseudo-conditional likelihood for estimating these heterogeneity parameters. Through simulation studies, we 
compare the robustness and efficiency of our approach with that of the maximum likelihood approach. The method is 
then applied to analyze the associations of weight gain with risk of breast cancer subtypes using data from the American 
Cancer Society Cancer Prevention Study II Nutrition Cohort.
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the full likelihood based approach. Simulation studies clearly indicate 
this robustness property of our approach. Our inference is based on 
an artificially constructed pseudo-conditional likelihood function. To 
show its validity, we derive the large sample properties of the resulting 
estimator.

A brief outline of the remainder of the article is as follows. Section 
2 contains the model and assumptions. In Section 3, we describe the 
proposed estimation methodology. The results of some simulation 
studies are described in Section 4. As an illustration, our method is 
applied to analyze the CPS-II Nutrition Cohort data in Section 5. Some 
concluding remarks are given in Section 6.

The Appendix contains the general methodology, the asymptotic 
properties, and the details of the simulation designs.

Model and Notation
For each subject in a cohort of n subjects, when no missingness 

occurs we observe (D,Y,X), where D takes on one or zero according 
to whether the subject is diagnosed with the disease or not during the 
follow-up period. For the sake of simplicity and easy understanding, 
we shall consider only two disease traits (i.e., K=2) and assume that X 
is a scalar covariate (i.e., P=1) in Sections 2 and 3. The general case of 
K ≥ 2 and P ≥ 1 is described in Appendix A. Thus, Y=(Y1,Y2)

T carries 
information on 2 disease traits. For a disease-free subject, we have D=0 
and Y=(0,0)T . If the k-th trait has Mk levels, then there are a total of 
M=M1×M2 disease subtypes. Our model is
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for i=1,…,n, where 1 2, )β(y y denotes the log-odds ratio parameter of the 
disease subtype (y1,y2) for the covariate, 1 2, )α(y y denotes the nuisance 
intercept parameter, and 

1 2, )∑(y y means summing over all M subtypes 
of the disease.

For a scalar continuous covariate scenario, there are M main 
regression (log-odds ratio) parameters of interest along with M 
intercept parameters, which are not the main interest here. Etiologic 
heterogeneity is measured via the differences among the regression 
parameters for a given covariate, and our focus is on estimation of the 
heterogeneity parameters.

Second-stage model

 To measure heterogeneity and reduce the dimension of subtype-
specific regression parameters, following Chatterjee [7] we use the 
following second-stage model for the log-odds ratio parameters in 
model (1):

1 2 1 2 1 2

(0) (1) (1) (2)
, ) 1( ) 2( ) 12( , ) ,β θ θ θ θ= + + +(y y y y y y                                             (2)

where θ(0) is the regression coefficient corresponding to the reference 
subtype of the disease, and the first-order and second-order parameter 
contrasts are respectively represented by 

1 2

(1) (2)
( ) 12( , ) 1,2, a, nd .

kk kθ θ=y y y  
By assuming certain contrasts to be zero, we can reduce the number of 
parameters. In addition, these assumptions can be tested. Assuming the 
second- and higher-order contrasts are equal to zero, which we call a 
second-stage additive model, *

(1) (1)
1( ) 1( )
θ θ−y y tells us the degree of etiologic 

heterogeneity with respect to the first trait, regardless of the levels of other 
traits. For identifiability, we set

2 1

(1) (1) (2) (2)
1(1) 2(1) 12(1, ) 12( ,1)0 0θ θ θ θ= = = =and y y

. 

More elaborately, the heterogeneity of the log-odds ratio parameters 

due to the first trait can be measured via the contrasts 
1

(1) (1)
1(2) 1( ),..., .Mθ θ

By assuming the second-order contrast parameters to be zero 
[7], we reduce the dimension of regression parameters from M1×M2 
to 1+M1−1+M2−1=M1+M2−1. In addition, in this case, the first-order 
contrast parameters directly measure etiologic heterogeneity. Usually 
the etiologic heterogeneity is measured via differences among the log-
odds ratio parameters [10,11]. Chatterjee [7] first introduced the idea 
to express the log-odds ratio parameters in terms of different order 
contrast parameters, and this new idea has not been explored much. 
Importantly, the assumption regarding the contrast parameters are 
testable, provided data contain enough information regarding those 
parameters.

To simplify the notation in the second-stage model, we use a 
design matrix  to relate the coefficient β that contains all the 

1 2, )β(y y

parameters of the unstructured polytomous model to the parameters 
θ of the log-linear model (2) as β=θ. In particular,  1 2 1 2, ) , ) ,Tβ θ= (y y (y y

where 
1 2, )

T
(y y

 
denotes the row of  corresponding to disease subtype 

(y1,y2). Also, using a second-stage model we can write α=ξ, where 
α is a length-M vector of all 

1 2, )α(y y parameters. We use ξ to denote 
the second-stage parameters for the nuisance parameters. For clarity, 
we write  

1 2 1 2, ) , ) ,Tα ξ=(y y (y y  where  
1 2, )

T
(y y denotes the row of A that 

corresponds to disease subtype (y1,y2).

Note that the use of the second-stage model for the regression 
parameters is not just for dimension reduction. More importantly, these 
second-stage model parameters are our main interest. As mentioned 
previously, these parameters directly measure the heterogeneity in 
the log-odds ratio parameters due to each of the disease trait. For 
the purpose of dimension reduction we set second and higher-order 
contrasts to be zero. However, this is not the only way of reducing 
dimension. For instance, one may keep all the second-stage model 
parameters, and then adopt the LASSO technique [12] to choose the 
important second-stage model parameters.

Missingness mechanism

We introduce non-missing value indicator variables, Ri=(Ri1,Ri2)
T, 

where Rik=1 (k=1,2) if the k-th trait is observed for diseased subject 
i and 0 otherwise. Since for a non-diseased subject there is no 
relevance of disease traits, for all non-diseased subjects we set R=(1, 1)T  
for convenience. Note that there are at most 22 types of missing data 
patterns: (0, 0), (0, 1), (1, 0), and (1, 1). For example, (1, 0) represents 
the case when the first trait is observed but not the second one. We 
assume that the probability of observing missingness pattern r, 
pr(R=r|Y,X)=π(r,X), does not depend on the disease traits. However, 
we not only allow the missingness probabilities to depend on X (a case 
of missing at random, MAR, [13,14]) but also allow the missingness 
indicators of different traits, R1 and R2, to be dependent on each other.

We introduce some additional notations to be used in the next 
sections. For the i-th subject, whose missing data pattern is r, we 
partition its vector of disease traits into the observed traits ro

iy and 
the missing traits rm

iy . Similarly, we will use mr
i

∑y to sum over all the 
possible values of rm

iy . For example, if Y1=y1 but Y2 is missing, then 
r=(1, 0), 1 2, ,r ro m Y= =y y y whose value is missing, and mr∑y means 
summing over all the terms corresponding to (Y1=y1, Y2=1), (Y1=y1, 
Y2=2),…,( Y1=y1, Y2=M2). When both traits are observed, mr∑y  just 
uses the term corresponding to (Y1=y1, Y2=y2).
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Estimation Methodology

Maximum likelihood method in the context of missing data

To estimate θ, one can use the maximum likelihood estimator 
(MLE), which is obtained by maximizing the full likelihood
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The resulting score functions for θ and ξ can be compactly written 
as 
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If the model assumptions (see Appendix B) hold, then under 
standard regularity conditions given in Theorem 5.41 of [15], the 
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As evident from the above discussion, the inference of the 
heterogeneity parameters, θ, depends on the intercept parameters 
α and their model α=ξ.. Next we discuss an alternative inference 
for the heterogeneity parameters, which is more robust against the 
misspecification of the second-stage model forα.

Pseudo-conditional likelihood in the context of missing data

In order to form pseudo-conditional likelihoods (PCL), for every 
subject with disease, we define a matched set  consisting of the 
subject itself and all subjects without the disease. Thus, if Di=1, then 
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Note that PCL is free of ξ (or αy) if there are no missing disease traits 
for any of the diseased subjects. Therefore, LPCL contains somewhat 
limited information regarding ξ. Hence, we shall estimate ξ from 
another set of estimating equations. Goetghebeur and Ryan [9] first 
introduced two different sets of estimating equations in the context of 
missing causes of failure in the competing risk model. Here, to estimate 
ξ we consider another pseudo-conditional likelihood L*

PCL,i such that 
the i-th subject has a disease of subtype , )r ro m

i i(y y  given that there is 
only one diseased subject in i without specifying the observed disease 
subtype. It is given as
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4.340,-5.330)T by adding vector (-5,-5,-5,-5,-5,-5,-5,-5)T in the column 
space of , which is the correctly specified part, to vector (-0.193, 
0.523,-0.297,-0.033,-0.170,-0.160, 0.660,-0.330)T perpendicular to the 
column space, which is the misspecified part.

Finally, we created missing values in the diseases traits using two 
mechanisms. For M1, the missing probabilities for each of the traits were 
allowed to depend on X through the logistic function exp(-1.5+0.5X)
{1+exp(-1.5+0.5X)}-1, resulting in missingness probabilities of around 
0.2 for each disease trait. For M2, 3 traits had 23=8 possible missingness 
patterns. For each case subject these patterns were generated 
from a multinomial distribution with the following probabilities 
pr{R=(1,0,0)|X}=d-1exp(γ1+0.5X); pr{R=(0,1,0)|X}=d-1exp(γ2+0.5X); 
pr{R=(1,1,0)|X}=d-1exp(3+0.5X); pr{R=(0,0,1)|X}=d-1exp(γ4+0.5X); 
pr{R=(1,0,1)|X}=d-1exp(5+0.5X); pr{R=(0,1,1)|X}=d-1exp(γ6+0.5X); 
pr{R=(1,1,1)|X}=d-1exp(γ7+0.5X), where 
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1
1 exp( 0.5 )ii

d Xγ
=

= + +∑
and γ1,…,γ7 were chosen so that marginally each trait had about 20% 
missing values.

For scenario 2, we considered three disease traits with numbers 
of levels 2, 3, and 5, resulting in 2×3×5=30 disease subtypes. With 
the corresponding = defined by the second-stage additive model, 
we took θ=(0.35,0.15,0,0.5,0.35,0.15,0,0.5)T and ξ=(-5,0,0,0,0,0,0,0)T 
(scenario 2a). For scenario 2b, we chose α the same way as in scenario 
1b.

Finally, we created missing values in the disease traits. For 
mechanism one, the missingness probabilities were allowed to depend 
on X through the logistic function exp(γk+0.5X){1+exp((γk+0.5X)}-1, 
where γk was chosen to be (-1.5,-1.5,-0.85)T, resulting in missing 
probabilities of around 0.2, 0.2, and 0.3 for the three disease traits, 
respectively. For mechanism two, we allowed the missingness 
probabilities to depend on each other in a similar pattern as in scenario 1.

Method of analysis

Each of the simulated datasets was analyzed by the maximum 
likelihood approach (MLE) and by the pseudo-conditional likelihood 
method (PCL). Furthermore, we analyzed the data considering only the 
subjects without any missing disease traits using the maximum likelihood 
approach, and we refer to it as the complete-case maximum likelihood 
estimator (CMLE). In all these analyses, we adopted the second-stage 
additive models for the regression and intercept parameters, β=θ and 
α=ξ. We present mean, median, median absolute deviation (MAD), 
empirical standard errors (Emp. SE), estimated standard errors (Est. 
SE), 95% coverage probabilities, and root mean square errors (RMSE) 
of all the methods based on 2,000 replications. To assess asymptotic 
bias, we present B.score  2000(mean estimate - truth) / Emp.SE.=

Results
To save space, in both scenarios we omit the results for missingness 

mechanism two, which are very similar to those for mechanism one. 
Also, we leave out results for the correctly specified intercept model 
case in scenario two. The conclusions that could be drawn from the 
results not presented were not different from those presented here. 
We would be happy to provide these omitted results upon request. 
The results for scenarios 1a (top panel of Table 1) indicate that when 
the intercept model is correctly specified: (1) all three methods are 
asymptotically unbiased; (2) the standard errors of the PCL method 
were slightly larger than that of the MLE method, but smaller than 
that of the CMLE method, which suggests that the PCL's efficiency is 
close to that of the MLE method; (3) similar to the standard errors, the 
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We estimate θ and ξ by solving SEE,θ=0 and SEE,ξ=0 simultaneously. 

Denote the resulting estimates as ( )ˆ ˆˆ , .
TT Tη θ ξ= The estimating 

equations are asymptotically unbiased, as is shown in Appendix B. The 
asymptotic distribution of the estimators is multivariate normal with 
the asymptotic covariance of η̂  consistently estimated by a sandwich 
estimator. The middle component of the sandwich estimator is obtained 
via a linearization technique applied to the estimating equations. The 
left and right multipliers of the sandwich estimator are the derivative of 
the estimating equations with respect to the parameters. See Appendix 
B for the general case.

Simulation Studies
Simulation design

One of the main goals of this numerical investigation was to show 
how robust our method is towards a misspecification of the intercept 
model in the presence of partially missing disease traits. We simulated 
cohort data of size n=5,000 by simulating (X,Y,D). The scalar covariate 
X was simulated from the Normal(0,1) distribution. We considered 
two scenarios each with 3 traits. First with 8=(2×2×2) disease subtypes, 
and second with 30 (=2×3×5) disease subtypes. For each scenario we 
considered a correctly specified (denoted by a) second-stage model 
and a misspecified one (denoted by b) for the intercepts. We created 
missing values in each trait where missingness probabilities depended 
on X. Two mechanisms were used: M1) the missingness probabilities 
were dependent on X but the missingness of different traits was 
independent; and M2) the missingness probabilities were dependent on 
X and the missingness of different traits was dependent. Overall disease 
probability lies between 6% and 9%.

For scenario 1, we considered three disease characteristics each 
with two levels, resulting in 2×2×2=8 disease subtypes. Assuming that 
the second- and higher-order contrasts for the relative risk parameters 
are negligible, we write

 

( )
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and we chose θ=(0.35, 0.15, 0, 0.5)T. Thus the 
disease subtypes were generated using the model 

{ }1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1
1 2 3 ( , , ) ( , , ) ( , , ) ( , , ) ( , , )pr( =( , , )| ) = exp( + ) 1 exp( + ) .Y X X Xα β α β

−
+ ∑y y y y y y y y y y y y y y yy y y  

We chose 
1 2 3( , , )α y y y to follow the same model as 

1 2 3( , , )β y y y with A=B and 

ξ=(-5,0,0,0)T (scenario1a). In addition, to study the robustness of the 
approach against the misspecification of the model for the intercepts 
(scenario 1b), we used α=(-5.193,-4.477,-5.297,-5.033,-5.170,-5.160,-
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Scenario 1a: Correctly Specified Model for Intercepts
Complete-case MLE MLE Pseudo-conditional Likelihood Method

θ(0) =0.35 (1)
1(2) 0.15θ = (1)

2(2) 0θ = (1)
3(2) 0.5θ = θ(0) =0.35 (1)

1(2) 0.15θ = (1)
2(2) 0θ = (1)

3(2) 0.5θ = θ(0) =0.35 (1)
1(2) 0.15θ = (1)

2(2) 0θ = (1)
3(2) 0.5θ =

Mean 0.357 0.149 0.000 0.497 0.354 0.147 0.001 0.498 0.351 0.148 0.002 0.500
Median 0.353 0.149 0.003 0.498 0.349 0.146 0.004 0.496 0.348 0.146 0.005 0.498
MAD 0:170 0.157 0.161 0.154 0.127 0.130 0.123 0.128 0.129 0.133 0.129 0.127

Emp. SE 0.161 0.152 0.153 0.158 0.126 0.128 0.125 0.126 0.129 0.132 0.128 0.128
Est. SE 0.163 0.153 0.152 0.159 0.129 0.125 0.124 0.129 0.131 0.128 0.128 0.133

Bias 0.007 −0.001 0.000 −0.003 0.004 −0.003 0.001 −0.002 0.001 −0.002 0.002 −0.000
B. Score 1.985 −0.189 0.046 −0.720 1.406 −0.904 0.455 −0.791 0.448 −0.550 0.693 −0.064
RMSE 0.161 0.152 0.153 0.158 0.127 0.128 0.125 0.126 0.129 0.132 0.128 0.128

CP 0.948 0.955 0.952 0.949 0.958 0.949 0.948 0.956 0.950 0.948 0.951 0.963

Scenario 1a: Correctly Specified Model for Intercepts

Complete-case MLE MLE Pseudo-conditional Likelihood Method

θ(0) =0.35 (1)
1(2) 0.15θ = (1)

2(2) 0θ = (1)
3(2) 0.5θ = θ(0) =0.35 (1)

1(2) 0.15θ = (1)
2(2) 0θ = (1)

3(2) 0.5θ = θ(0) =0.35 (1)
1(2) 0.15θ = (1)

2(2) 0θ = (1)
3(2) 0.5θ =

Mean 0.475 0.027 −0.077 0.456 0.476 0.023 −0.076 0.459 0.383 0.122 −0.017 0.482
Median 0.478 0.031 −0.077 0.451 0.476 0.022 −0.075 0.457 0.383 0.120 −0.016 0.479
MAD 0.147 0.146 0.155 0.147 0.117 0.125 0.124 0.122 0.133 0.130 0.134 0.124

Emp. SE 0.148 0.150 0.152 0.152 0.117 0.122 0.124 0.122 0.133 0.128 0.130 0.127
Est. SE 0.159 0.149 0.149 0.155 0.126 0.122 0.122 0.125 0.136 0.128 0.127 0.132

Bias 0.125 −0.123 −0.077 −0.044 0.126 −0.127 −0.076 −0.041 0.033 −0.028 −0.017 −0.018
B. Score 37.776 −36.571 −22.603 −12.880 48.513 −46.309 −27.410 −15.099 11.160 −9.918 −5.717 −6.248
RMSE 0.194 0.194 0.171 0.158 0.172 0.176 0.145 0.129 0.137 0.131 0.131 0.129

CP 0.898 0.860 0.916 0.942 0.858 0.812 0.898 0.942 0.954 0.946 0.946 0.954

Table 1: Simulation results for the complete-case MLE, the MLE, and the pseudo-conditional likelihood method. Here MAD, Emp. SE, Est. SE, Bias, B. Score, RMSE, and 
CP denote median absolute deviation, empirical standard error, estimated standard error, bias, bias score, root mean squared error, and 95% coverage probability based 
on the Wald-type confidence intervals, respectively. The results were based on 2,000 replications. There were 2×2×2=8 disease subtypes. The missingness probabilities 
depended on the covariate.

θ(0)=0.35 (1)
1(2) 0.15θ = (1)

2(2) 0θ = (1)
2(3) 0.5θ = (1)

3(2) 0.35θ = (1)
3(3) 0.15θ = (1)

3(4) 0θ = (1)
3(5) 0.5θ =

Complete-case MLE
Mean 0.475 0.154 0.004 0.425 0.251 0.017 −0.145 0.407

Median 0.473 0.154 0.004 0.426 0.252 0.014 −0.144 0.411
MAD 0.184 0.134 0.180 0.166 0.209 0.204 0.218 0.212

Emp. SE 0.185 0.131 0.178 0.164 0.214 0.217 0.221 0.207
Est. SE 0.190 0.134 0.182 0.166 0.209 0.217 0.221 0.204

Bias 0.125 0.004 0.004 −0.075 −0.099 −0.133 −0.145 −0.093
B. Score 30.220 1.249 1.066 −20.372 −20.787 −27.353 −29.367 −20.149
RMSE 0.223 0.131 0.178 0.180 0.236 0.254 0.265 0.227

CP 0.910 0.954 0.960 0.930 0.917 0.911 0.0009 0.920
MLE

Mean 0.474 0.153 0.006 0.428 0.252 0.012 −0.148 0.402
Median 0.474 0.150 0.005 0.428 0.252 0.008 −0.148 0.402
MAD 0.139 0.102 0.133 0.120 0.171 0.172 0.185 0.170

Emp. SE 0.144 0.101 0.136 0.126 0.171 0.176 0.182 0.168
Est. SE 0.147 0.102 0.139 0.126 0.171 0.178 0.181 0.166

Bias 0.124 0.003 0.006 −0.072 −0.098 −0.138 −0.148 −0.098
B. Score 38.546 1.148 1.919 −25.553 −25.665 −35.047 −36.248 −26.070
RMSE 0.190 0.101 0.136 0.146 0.197 0.223 0.235 0.194

CP 0.881 0.959 0.954 0.910 0.909 0.886 0.864 0.902
Pseudo-conditional Likelihood Method

Mean 0.381 0.160 0.001 0.476 0.327 0.119 −0.039 0.478
Median 0.379 0.156 −0.000 0.473 0.330 0.115 −0.039 0.479
MAD 0.156 0.108 0.138 0.131 0.177 0.173 0.190 0.178

Emp. SE 0.157 0.108 0.139 0.132 0.179 0.180 0.191 0.177
Est. SE 0.164 0.111 0.141 0.165 0.192 0.188 0.188 0.208

Bias 0.031 0.010 0.001 −0.024 −0.023 −0.031 −0.039 −0.022
B. Score 8.836 4.061 0.426 −8.187 −5.687 −7.594 −9.079 −5.497
RMSE 0.160 0.108 0.139 0.135 0.181 0.183 0.195 0.178

CP 0.952 0.964 0.957 0.962 0.952 0.955 0.947 0.963

Table 2: Simulation results for the complete-case MLE, the MLE, and the pseudo-conditional likelihood method. Here MAD, Emp. SE, Est. SE, Bias, B. Score, RMSE, and 
CP denote median absolute deviation, empirical standard error, estimated standard error, root mean squared error, bias, bias score, root mean squared error, and 95% 
coverage probability based on the Wald-type confidence intervals, respectively. The results were based on 2,000 runs. There were 2×3×5 = 30 disease subtypes. The model 
for the intercepts was misspecified. The missingness probabilities depended on the covariate. This is Scenario 2b.
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RMSEs of the PCL method were slightly larger than that of the MLE 
method, but smaller than that of the CMLE method; (4) the estimated 
standard errors of the PCL method were close to that of the empirical 
standard errors; and (5) all methods' coverage probabilities were close 
to the nominal level (95%). The trend of the results remains the same 
for scenario 2a.

The results for scenarios 1b (bottom panel of Table 1) and 2b (Table 
2) indicate that when the intercept model is misspecified: (1) the biases 
of both the MLE and the CMLE methods were prominent, but the biases 
of the PCL method were far less serious; (2) the comparisons of the 
three methods in terms of standard errors, RMSEs and estimated and 
empirical standard errors agreement were similar to those in the model 
with correctly specified model for the intercepts; and (3) the coverage 
probabilities of the MLE and the CMLE methods deviated from the 
nominal level, but the coverage probabilities of the PCL stayed close to 
the nominal level. Finally, the PCL method was almost as efficient as 
the MLE method in all scenarios. The bias of the CMLE method can be 
attributed to model misspecification of the model for the intercepts and 
ignoring the subjects with missing traits. However, the main source of 
bias in the MLE method is due to model misspecification.

Following a referee's comment we conducted additional simulation 
to study the performance of the three methods in the presence of 
non-null second-order contrasts in the true data generating process. 
As in Scenario 1, we used 2×2×2=8 disease subtypes, the missingness 
probabilities were made depended on X, and the intercept model was 
misspecified. But in addition to the original θ=(0.35, 0.15, 0, 0.5)T , 
the true values of the second-order contrast parameters were taken 
as (2) (2) (2)

12(2,2) 13(2,2) 23(2,2)0, 0.2, 0.2.θ θ θ= = − =  We call this Scenario 1c. For 
Scenario 1c, we first analyzed the simulated datasets assuming a second-
stage additive model, meaning second- and higher-order contrast were 
set to zero. Then, we analyzed the datasets adopting a second-stage 
model keeping all first- and second-order contrasts parameters but 
setting third- and higher-order contrast parameters to zero. For the 
misspecified additive model (top panel of Table 3), the PCL method's 
biases were much smaller than either MLE or CMLE for all but one 
parameters, and its RMSE's were smaller than CMLE and sometimes 

smaller than MLE. With the second-order contrasts included in the 
model (bottom panel of Table 3) the PCL method also performed well 
with the smallest biases.

Data Example

The CPS-II Nutrition Cohort is a prospective study of cancer 
incidence and mortality in 86,402 men and 97,786 women and has 
been described in detail elsewhere [1]. Briefly, the Nutrition Cohort is 
a subgroup of the approximately 1.2 million participants of the CPS-
II Cohort, a prospective study of cancer mortality established by the 
American Cancer Society in 1982 [16]. Nutrition Cohort participants 
resided in 21 states with population-based cancer registries, were aged 
50-74 years, and completed a 10-page confidential, self-administered 
mailed questionnaire at enrollment in 1992 or 1993.

Excluded from this analysis were Nutrition Cohort participants who 
were men (n=86,402); women who were using hormone replacement 
therapy (n=33,407), not post-menopausal (n=3,514), lost to follow-up 
(i.e., alive at the first follow-up questionnaire in 1997 but did not return 
the 1997 or any subsequent follow-up questionnaires) (n=2,178), 
reported a personal history of cancer other than non-melanoma skin 
cancer in 1992 (n=9,520), reported a diagnosis of breast cancer on 
the first survey that could not be verified through medical or cancer 
registry records or an in situ breast cancer (n=174), or the subjects with 
missing values in any of the predictor variables or whose weight gain 
was more than 100 lbs (n=7,979). Included in the analysis were 41,014 
women. There were 1,555 incident cases of breast cancer (International 
Classification of Disease for Oncology, Second and Third Editions site 
code C50) that occurred between the date of the baseline questionnaire 
and June 30, 2007.

The risk factor of interest in the analysis was total weight change 
since age 18 to 1992 (WG) as it has been shown to be related to risk 
of breast cancer in previous studies (e.g., [8], [17], and [18]). WG was 
transformed to be between 0 and 1 for numerical stability. Using (y1,…, 
y5) to represent levels of the five traits, stage (2 levels), histology (3 
levels), estrogen receptor (2 levels), progesterone receptor (2 levels), 
and grade (3 levels), we can write the polytomous logistic model and 
the corresponding second-stage additive model as 
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for i=1,…,n. Contingency tables for the disease configurations can 
be found in Table 4. We used the second-stage additive models for 
both the intercepts and regression (log-odds ratio) parameters for all 
three methods. For the MLE and PCL methods we used all 1,555 cases 
while for the CMLE approach we used 848 cases whose disease traits 
information was complete.

The results are presented in Table 5. Since the PCL approach 
is more robust towards misspecification of the intercept model, we 
interpret the corresponding results here. Under the PCL method, we 
conclude that (1) the estimate of θ(0) due to weight gain is positive and 
statistically significant at the 5% level. The odds ratio for the incidence 

Scenario 1c: Additive model (misspecified)
 

θ(0)=0.35  
(1)
1(2) 0.15θ =

 
(1)
2(2) 0θ =

 
(1)
3(2) 0.5θ =

Bias
CMLE 0.099 −0.248 −0.078 0.096
MLE 0.100 −0.250 −0.078 0.095
PCL 0.001 −0.137 0.000 0.103

RMSE
CMLE 0.179 0.287 0.168 0.184
MLE 0.157 0.277 0.145 0.158
PCL 0.139 0.188 0.131 0.168

Scenario 1c: Model with second-order contrasts
 

 θ(0)=0.35 (1)
1(2) 0.15θ =  

(1)
2(2) 0θ =

 
(1)
3(2) 0.5θ =

Bias
CMLE −0.090 0.023 0.022 0.371
MLE −0.080 0.016 0.020 0.363
PCL 0.015 −0.012 0.004 −0.001

RMSE
CMLE 0.224 0.256 0.250 0.447
MLE 0.191 0.219 0.217 0.419
PCL 0.211 0.266 0.272 0.248

Table 3: Simulation results for the complete-case MLE, the MLE, and the pseudo-
conditional likelihood method. Here RMSE represents root mean squared error. 
The results were based on 2,000 runs. There were 2×2×2 = 8 disease subtypes. 
The model for the intercepts was misspecified. The missingness probabilities 
depend on the covariate. This is Scenario 1c, where the true values of some of the 
second-order contrasts of the log-odds ratio parameters were not zero.
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of breast cancer with well differentiated grade, localized stage, histology 
ductal, ER status positive and PR status positive for the 3rd quartile (45 
lbs, re-scaled to be 0.476) of weight gain versus 1st quartile of weight 
gain (15 lbs, re-scaled to be 0.190) is 1.356 (exp{(0.476 – 0.190) × 
1:066}, 95% confidence interval (CI): 1.164–1.580); (2) the PCL method 
produced statistically significant estimates of (1) (1) (1) (1)

2(2) 3(2) 4(2) 5(2), , , andθ θ θ θ
for the covariate weight gain, which can be interpreted as follows. For 
a women who gained 45 pounds versus one who gained 15 pounds, the 
odds ratio of the disease with distant tumor is 1.260 (95% CI: 1.089-
1.459) times the odds ratio of the disease with localized tumor, keeping 
all other traits fixed; the odds ratio of the disease with lobular histology 
is 0.822 (95% CI: 0.694–0.974) times the odds ratio of the disease 
with ductal histology, keeping all other traits fixed; the odds ratio of 
the disease with ER– status is 1.287 (95% CI: 1.006–1.646) times the 
odds ratio of the disease with ER+ status, keeping all other traits fixed; 
the odds ratio of the disease with PR–status is 0.705 (95% CI: 0.577–

0.862) times the odds ratio of the disease with PR+ status, keeping all 
other traits fixed.

Following a referee's suggestion, we conducted a model assessment 
for the data example. There are 72 log-odds ratio parameters, and as 
will be discussed in the last paragraph of this section, not all of these 
parameters are estimable. Now, we consider a second-stage model 
where all third- and higher-order contrast are zero. In this setup we 
test H0 : all second-order contrasts are zero against Ha : at least one 
of the second-order contrasts is non-zero. For this purpose we fit the 
model with all first- and second-order contrast parameters using the 
proposed PCL approach. The test statistic is 1ˆ ˆ( ) ( )T TT A A A Aθ θ−= ∑ , 
where A is a 19 × 27 matrix partitioned as A=(019×8: I19) with I19 being 
an identity matrix of order 19, and Σ stands for the asymptotic variance 
covariance matrix for θ̂ . Under H0, T approximately follows the 

2
19χ distribution. The corresponding p-value was smaller than 0.001, 

Histology=Ductal Histology=Lobular Histology=Other
Stage Stage Stage

NA Localized Distant NA Localized Distant NA Localized Distant
 Grade NA 6 128 38 2 86 32 10 48 10

Well 2 184 20 0 21 3 0 35 1
Moderate 10 324 90 0 73 24 0 31 10
Poor 2 180 104 0 29 13 1 21 17

PR PR PR
NA + − NA + − NA + −

NA 323 2 1 66 0 2 70 0 1
ER + 45 478 110 10 156 39 5 74 12

− 3 5 121 0 3 7 1 4 17
ER=NA ER=+ ER=−
Stage Stage Stage

NA Localized Distant NA Localized Distant NA Localized Distant
 Grade NA 16 112 39 2 130 38 0 20 3

Well 2 46 4 0 188 20 0 6 0
Moderate 5 112 33 5 288 82 0 28 9
Poor 2 60 34 1 111 64 0 59 36

PR PR PR
NA + − NA + − NA + −

Ductal 323 2 1 45 478 110 3 5 121
Histology Lobular 66 0 2 10 156 39 0 3 7

Other 70 0 1 5 74 12 1 4 17

Table 4: Contingency tables of disease traits configurations among 1; 555 cases from the CPS-II Nutrition Cohort data. Here ER, PR, and NA, stand for estrogen receptor, 
progesterone receptor, and not available (missing), respectively.

METH Ref. Grade (Well) Stage (Localized) Histology ER Status (ER+) PR Status (PR+)
Moderate Poor Distant Lobular Other ER− PR−

%missing 23.2 21.2 0 30 33.6

 θ(0) (1)
1(2)θ (1)

1(3)θ (1)
2(2)θ (1)

3(2)θ (1)
3(3)θ (1)

4(2)θ (1)
5(2)θ

CMLE EST 1.312 −0.160 −0.033 0.703 −0.652 0.379 −0.126 −0.879
SE 0.357 0.386 0.415 0.354 0.443 0.523 0.420 0.339

p-value <0.001 0.679 0.937 0.047 0.142 0.469 0.764 0.009
MLE EST 0.961 0.040 0.268 0.795 −0.666 0.404 0.233 −0.693

SE 0.305 0.332 0.357 0.263 0.307 0.349 0.376 0.308
p-value 0.002 0.904 0.452 0.003 0.030 0.246 0.535 0.025

PCL EST 1.066 0.025 0.128 0.810 −0.685 0.368 0.883 −1.222
SE 0.273 0.317 0.346 0.261 0.303 0.351 0.439 0.359

p-value <0.001 0.937 0.711 0.002 0.024 0.294 0.045 0.001

Table 5: Results of the CPS-II Nutrition Cohort data analysis with five disease traits and weight gain from age 18 to 1992 as the predictor. Here EST, SE, METH, ER and 
PR stand for estimate, standard error, method, estrogen receptor and progesterone receptor, respectively.
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indicating that some second-order contrast parameters significantly (at 
the 5% level) differ from zero. Please see Table 6 for the new analysis 
with the second-stage model containing all first- and second-order 
contrast parameters. Although complex due to the presence of some 
non-null second-order contrast parameters, the model parameters of 
Table 6 can be interpreted. For example, we interpret (2)

14(3,2)θ  as follows:

{ }(2)
14(3,2)exp

{pr(G = Poor,ER = -|X + 1)/pr(G = Well,ER = -|X + 1)}/{pr(G = Poor,ER = -|X)/pr(G = Well,ER = -|X)}
{pr(G = Poor,ER = +|X + 1)/pr(G = Well,ER = +|X + 1)}/{pr(G = Poor,ER = +|X)/pr(G = We

θ

=
ll,ER = +|X)}

Where G stands for Grade. Here the numerator is the odds ratio for 
Grade being Poor vs. Well associated with one unit increase in weight 
gain when ER status is −, whereas the denominator is the same odds 
ratio when ER status is +. Here (2)

14(3,2)θ  is non-zero, so the odds ratio 
varies with the change of ER status. Also, due to estimation of more 
parameters, the standard errors of the estimators have substantially 
increased (please see the standard errors of the first-order contrast 
parameters in the PCL method in Table 5 vs. Table 6. This entire testing 
procedure demonstrates one of the good features of the proposed 
method that we can formally test our assumptions regarding the 
contrast parameters.

Prompted by a reviewer's comment, here we discuss the issue 
of configurations with few or no subjects. There are no subjects in 
23 out of the 72 possible disease subtypes. That means that a simple 
polytomous logistic model cannot be fit to this data with all 72 disease 
subtypes. The second-stage additive model, on the other hand, can 
enable us to make use of the cross classification structure and thus 
achieve sharing information across subtypes. The proposed method 
with second stage additive model still works when some subtypes have 
no cases observed. We require some cases for every level of each trait, 
which is easier to have than requiring cases for each subtype. Moreover, 
in the data example, our method works when the second-stage model 
contains all first- and second order contrast parameters. In fact, one 
may add more higher-order contrast parameters in the second-stage 
model, but these additional parameters may not be estimable from the 
data. For example, the third- and higher-order contrast parameters 
involving ER−, Grade Well, and Stage Distant are not estimable as the 
corresponding cell frequency is zero (the third panel of Table 4).

Discussion
The two-stage model is an efficient and flexible way to measure 

heterogeneity of the odds ratios. It allows a sensible way to dimension 
reduction. For parameter estimation of the second-stage model, one 
can use the MLE, PCL, or the CMLE methods. Compared with the 
MLE method, our method reduces the effects of the intercepts on the 
estimation of the regression parameters, and thus it is more robust 
against the misspecification of the model for the intercepts. 

When the model is correct, the PCL method is asymptotically 
unbiased. In addition, our simulations suggest (1) when the second-
stage model for the intercepts is misspecified, our bias is usually smaller 
than that of either the MLE method or the CMLE method, and (2) with 
either correctly specified or misspecified model for the intercepts, our 
method can usually achieve efficiency that is very close to the MLE 
method.

Analysis of the Cancer Prevention Study (CPS)-II Nutrition 
Cohort data represents the first effort that the authors are aware of 
to simultaneously examine the effect of multiple covariates on the 
outcome. We hope that it not only is a demonstration of the method 
but also sheds light on the etiology of breast cancer.
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Appendix 

A General Methodology 

 Suppose that   is a vector of   covariates, and             carries information on 

disease traits, and   is the total number of disease subtypes, based on all possible 

combinations of the various traits. We will use  for . Our model is

      , , ,1 1
pr ( 1, | ) exp / 1 exp ‍‍
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D X X 


      for  . For  disease subtypes, we have 

main regression parameters of interest along with  intercept parameters. The log-linear model for the log-odds ratio 

parameter is  
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 Suppose that  is the set of log-odds ratio parameter corresponding to , then the second-stage model can be 

written as  . From here on, we denote  by  . For each subject we introduce a vector 

of binary variables , where      if the  trait is observed and   otherwise. For our 

convenience, we set  for a non-diseased subject. Using our methodology the estimating functions for 
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for  , respectively. We want to clarify that 
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 We estimate ,  , and  by solving  ,  ,  simultaneously. Denote the 

resulting estimator as ̂   ̂   ̂ . 

B Asymptotic Properties 

 In this section, we discuss the large sample properties of  ̂. We show that   (  ) 

and            in probability, i.e., the estimating equations are asymptotically unbiased. 

Regularity conditions: 

Let            
       
     

       
       

   . 

C1. The parameter space for  is a compact subset of an Euclidean space. 
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C4. The elements of the second-stage design matrices   and  remain uniformly bounded in absolute 

value by constants, say    and , respectively. 

C5. The information matrix   is positive definite. 

C6. The deterministic equation  has only one root in the neighborhood of the true parameters. 

Conditions C1-C4 are required for uniform convergence, i.e.,  . Condition C5, 

C6 (identifiability) and the asymptotic unbiasedness of  for zero (to be proved) together imply convergence of 

the estimator in probability towards the true value (Theorem 5.9 of [15]). 

Asymptotic Unbiasedness: 

Here we first show that  as  at the true parameter value. Due to the law of large 

numbers,  converges to its expectation. In order to calculate this expectation, we shall use the conditional 



probability that the  -th subject has disease of type  given that there is one diseased subject in the 

matched set  with this disease type. Hence, 
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 Now, the first term on the right hand side above is 
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 The difference between the two terms is easily seen to be asymptotically the expected weighted conditional 

covariance between  and  with weight 
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Similarly, due to the law of large numbers,          converges to its expectation. In order to calculate this 
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we obtain that          
 

 . 

Asymptotic Normality: 

Note that for large    
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 the summand of the second term of (B1) is  
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 Plugging (B2) into (B1) and changing the order of the two summations in the second term, we have  
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Finally, applying the strong law of large numbers and the Slutsky's Theorem, we obtain 
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 Employing the same technique as that used in (B2), we can write 
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 (B4) 

                      

 Plugging (B4) into (B3) and changing the order of the two summations in the second term, we have  
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 The last equality follows due to the application of the strong law of large numbers and Slutsky's Theorem. Thus we 
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and the asymptotically independent terms are 

 

            
      
          

      
           

        . Also,  

     
   

   
   

1

0,

, 0, , ,,

0,

Φ , ‍‍
or

p o m o mr r r r
ii i i imr ori

y p

i i i py y X y yi
r y y p

Q
I R r D X

Q
  

 
 
 
 





   

         0 ,

0

1 exp‍(m o mr r r

or

T

i r y y y

y

D
D E I R r

Q



   



   

 
 

 

   
   

,1

1

0,

, 0, ,

0,

) | ,
or

o m o mr r r r

or

p y pT

i p iy y y y

y

p

i pp

p

X
Q

X X
Q




 
   

   

  

   
   

   
   

1

0

, 0, , ,

0

Φ , ‍‍ o m o mr r r r
ii i i imr

i

i i i y y X y y
r y

Q
I R r D

Q
   

  
   

  
   

             
  

   
   

1

0

,0 01

0 0

1    exp | ,
P pT T

i y i p y y ir y p

QD
D E I R r X X

Q Q
 



   
      
    

    

where    represents the true distribution of   among the controls. 

Therefore, the asymptotic covariance of  ̂ can be consistently estimated by  
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where  ̂   
   ̂  ̂  and  ̂   

   ̂  ̂  are obtained by replacing the expectations by the empirical averages,    by    , 

and the true parameters by their consistent estimators. 
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