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Introduction
In both developed and developing countries, birthweight is 

arguably the single most important predictor of infant mortality, 
besides being significantly associated with infant and childhood 
morbidity [1-5]. Low birthweight (LBW, < 2500 g) infants have 
increased risk of developing cerebral palsy, hyaline membrane disease, 
apnoea, intracranial haemorrhage, sepsis, retrolental fibroplasia, and 
other conditions related to physiological immaturity [6-7].

Although infant mortality in the United States declined 45.2% 
from 1980 to 2000 (from 12.6 to 6.9 deaths per 1,000 live births), the 
percentage of LBW infants increased 11.8% (from 6.8 to 7.6 per 1,000 
live births) and that of very low birthweight (VLBW, < 1500 g) infants 
increased 24.3% (from 1.15 to 1.43 per 1,000 live births) [8]. To the 
extent that LBW lies on a causal pathway leading to infant mortality, 
decreases in the former may further reduce the latter.

Several risk factors, both anthropic and environmental, have been 
implicated as possible contributors to LBW and, therefore, infant 
mortality. Based on a meta-analysis that included 17 observational 
studies, Vergnes and colleagues [9] identified 14 clusters of such 
risk factors while focusing on the role of periodontal disease on 
adverse pregnancy outcomes: 1. maternal age; 2. maternal general 
medical conditions; 3. maternal pregnancy associated conditions; 4. 
uterine, placental, or fetal abnormalities; 5. anthropometric factors; 
6. socioeconomic status; 7. genitourinary tract infection; 8. other
infection; 9. tobacco; 10. alcohol or drugs; 11. race or ethnicity; 12.
prenatal care; 13. obstetric history; and, 14. dental treatment or oral
hygiene.

The goal of the present work is to introduce a new analytic 
framework for revealing the relationships between such risk factors 
and the latent variables representing components in a mixture model 
for birthweight distribution. To make this article self-contained and to 

clarify this goal, we begin with a brief description of mixture modeling 
and its application to birthweight distribution.

Mixture Modeling and Birthweight Distribution
Mixture modeling is used to describe phenomena (such as 

birthweight) for which common parametric probability distributions 
are not suitable [10-14]; the citations in [14] identify some other 
relevant sources on mixture modeling. While a mixture model may 
be constructed from any family of common parametric probability 
distributions, in practice the normal family is most often used. A 
normal mixture model with k components is defined by the probability 
density function
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where f(x; mj,sj), 1 ≤ j ≤ k, is the probability density function of the 
normal distribution with mean and standard deviation sj, both positive 
numbers, while p1 to pk are nonnegative constants that sum to 1. 

Notice that Equation (1) may include redundant components. For 
example, if pk = 0 or if both µk = µj’ and σk = σj’, where j’ is between 
1 and k-1, then the kth component is redundant. Moreover, the fact 
that such a redundancy may be achieved in two ways has profound 
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Abstract
Low birthweight (LBW) is a well-known risk factor for infant mortality worldwide. Although infant mortality has 

decreased in the United States during the past 20 years, the incidence of LBW has increased, suggesting that further 
reductions in infant mortality may be possible if the incidence of LBW can be reduced. In the present work, we introduce 
a new analytic framework for revealing the relationships between latent variables representing components in a 
mixture model for birthweight distribution and various other risk factors. More specifically, we show how to estimate 
the probability that a risk factor is present within one of the mixture components as well as the probability of mixture 
component membership among infants for whom a risk factor is present, both at a fixed birthweight and averaged 
across birthweights. We illustrate our analytic framework using publicly available data for white singletons born in 
the United States between 1998 and 2002. This framework provides a quantitative approach for the prediction of 
how addressing a modifiable risk factor may affect both the incidence of LBW and infant mortality, thereby facilitating 
decision making regarding resource allocation toward addressing that risk factor.
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implications for statistical inference. In particular, one cannot perform 
a chi-square-calibrated likelihood ratio test to determine the number 
of non-redundant components. To circumvent this difficulty, one 
may employ an information criterion to estimate the number of non-
redundant components. Three such criteria are the FLIC [15], AIC [16], 
and BIC [17]. In the context of applying a normal mixture model to 
birthweight distribution, Charnigo and colleagues [15] argued in favor 
of using the FLIC; the FLIC is intermediate between the AIC and the 
BIC, and so the FLIC may avoid choosing either too many components 
(a potential weakness of the AIC) or too few (a potential weakness of 
the BIC). Alternatively, one may employ the approach of Li and Chen 
[18] for determining the number of non-redundant components. Their 
approach is based on sequential hypothesis testing underpinned by the 
expectation maximization algorithm. For the balance of this article, we 
will assume that all redundant components have been discarded, so 
that k in Equation (1) is the number of non-redundant components. 

Equation (1) is often interpreted as saying that the full population 
consists of k subpopulations; the proportion of individuals in the full 
population belonging to subpopulation j is pj, and in subpopulation j the 
measurements (birthweights, in this article) are normally distributed 
with mean mj and standard deviation sj . This interpretation comes with 
two key caveats. First, such subpopulations are not explicitly identified. 
In other words, subpopulation membership is a latent variable. Second, 
such subpopulations may not possess obvious biological meanings. 
Even so, when fitting two-component normal mixture models to 
birthweight distributions, Gage and Therriault [19] suggested that the 
two components might be roughly described as representing normal 
and abnormal developmental processes respectively.

Scope of the present work

The present work, however, goes beyond rough descriptions and 
explicitly relates mixture component membership to various risk 
factors for LBW and infant mortality, notwithstanding the two key 
caveats. Indeed, the present work is designed to mitigate these caveats. 
First, we will show how to obtain point and interval estimates of the 
probability that a risk factor is present within one of the mixture 
components as well as point and interval estimates of the probability 
of mixture component membership among infants for whom a risk 
factor is present, both at a fixed birthweight and averaged across 
birthweights. Thus, although mixture component memberships are not 
explicitly identified, probabilities can be assigned to the corresponding 
latent variable, thereby permitting informative statements such 
as, “A premature infant at birthweight 1600 g has a 99% chance of 
belonging to component 1.” Second, while the mixture components 
themselves may lack obvious biological meanings, we will show how 
to probabilistically relate membership in the mixture components to 
factors that do have obvious biological meanings; for instance, the 
probability of membership in component 4 may be elevated when the 
infant’s mother is diabetic. 

The rest of this article is organized as follows. Section 2 presents 
our analytic framework, which combines a modified version of Gage’s 
[20] parametric mixtures of logistic regressions [20,21] with Bayes’ 
Theorem and the Law of Total Probability. Section 3 illustrates the 
analytic framework through application to data publicly available from 
the Centers for Disease Control and Prevention on white singletons 
born in the United States between 1998 and 2002. Section 4, besides 
identifying limitations of our analytic framework and opportunities 
for future research, describes how the analytic framework may be used 

to quantify the reductions in LBW incidence and infant mortality that 
may be attainable from interventions targeted toward a modifiable risk 
factor related to mixture component membership.

Analytic Framework
For ease of exposition, we present our analytic framework in seven 

steps.

Step 1 

Acquire the data and classify the subjects. Draw with replacement 
Nrep samples of size n from the population of interest. For instance, the 
population of interest may be singleton infants born to non-Hispanic 
white mothers in the United States between 1998 and 2002 with known 
gestational ages of at least 22 weeks and known birthweights between 500 
and 5500 g. Following Charnigo and colleagues [15], we suggest taking 
Nrep = 25 and n = 50,000. Of course, an investigator may choose Nrep and 
n however he/she wishes, subject to the following considerations: (i) 
taking Nrep too small may yield undesirably wide confidence intervals; 
(ii) there is a point of diminishing returns, depending on the amount 
of overlap among the samples, past which increasing Nrep may not 
substantially shorten confidence intervals; (iii) taking n too small may 
result in selection of a normal mixture model with too few components, 
diminishing the value of the subsequent analyses; and, (iv) taking n too 
large may immensely increase the computation time. Each infant in 
each sample is then classified as “high risk” or “low risk” on the factor 
being related to mixture component membership. For instance, if the 
factor is maternal diabetes, then infants born to diabetic mothers are 
classified as “high risk” and infants born to non-diabetic mothers are 
classified as “low risk”. 

Step 2

Select the number of components in the mixture model for 
birthweight distribution. This can be done by applying the FLIC to the 
birthweights in each of the Nrep samples [15]. The FLIC has the form -2 
log Lk + 2(log √n)B(n,δ) (3k - 1), where Lk is the value of the likelihood 
function for the fitted k-component model and B(n,δ) is a function of 
the sample size and parameter estimates that falls between 0 and 1; one 
minimizes the FLIC over k between 1 and a prespecified upper bound 
such as 7 [15]. Then the number of components in the mixture model 
for birthweight distribution can be determined by a majority vote 
from the Nrep samples. For example, if the FLIC recommends a four-
component mixture model for 23 out of Nrep = 25 samples, then a four-
component mixture model can be adopted for the subsequent analyses. 

Step 3

Given the selected number of components from Step 2, estimate 
the parameters in Equation (1) using each sample. Then combine the 
sample-specific estimates into overall estimates. The sample-specific 
estimates of parameters in Equation (1) may be obtained, in principle, 
by maximum likelihood. A practical implementation involving the 
expectation maximization algorithm and the optim function in the R 
statistical software package is described by Charnigo and colleagues 
[15]; the overall estimates are then acquired by averaging the sample-
specific estimates. (These overall estimates are used in Steps 4 through 
7 below whenever Equation (6) in [21] is invoked)

Step 4

Using each sample, estimate the probability of high risk 
classification on the factor being studied, as a function of both 
birthweight and component membership. Then combine the sample-
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specific estimates into overall estimates and produce 95% confidence 
intervals. Symbolically, we need to estimate

P(high risk | birthweight, component),		                 (2)

where P stands for probability, birthweight is continuous and ranges 
from (say) 500 to 5500 g, and component is categorical and ranges 
from 1 to k. Using any particular sample, this can be accomplished 
by applying a modified version of Gage’s [20] parametric mixtures of 
logistic regressions (PMLR), as described by Charnigo and colleagues 
[21]. PMLR was originally designed as a tool to estimate birthweight-
specific infant mortality within each component of a two-component 
normal mixture model but was subsequently modified to accommodate 
an arbitrary finite number of components. Importantly, modified 
PMLR is not the same as performing an ordinary logistic regression 
with birthweight and component membership allowed to interact; 
indeed, performing such a logistic regression is impossible anyway 
because component membership is a latent variable. Moreover, the 
present application of modified PMLR is distinguished from that 
in [21] in that now, instead of infant mortality, we take high risk 
classification on the factor being related to component membership 
as our dichotomous outcome variable. Once sample-specific estimates 
of Equation (2) are acquired, overall estimates and 95% confidence 
intervals may be obtained via formulas (6) and (7) in [21],

θ* + { B*θ + C S*θ / √ Nrep } and C = C0 √ (φ Nrep / { 1 - (1- φ)Nrep }),

where θ* is the mean of the sample-specific estimates, B*θ is a bias 
adjustment, S*θ is the standard deviation of the sample-specific 
estimates, C0 is set to 4.0, and φ is set to n divided by the population 
size. 

Step 5

Using each sample, estimate the probability of membership in each 
component, as a function of birthweight among those with high risk 
classification. Then combine the sample-specific estimates into overall 
estimates and produce 95% confidence intervals. Symbolically, we wish 
to estimate

P(component | birthweight, high risk).		                  (3)

To do this, we employ Bayes’ Theorem, which says that Equation 
(3) is equal to

P(high risk | birthweight, component) P(component | birthweight) 
/ ∑j=1

k P(high risk | birthweight, j) P(j | birthweight).		

Sample-specific estimates of quantities P(high risk | birthweight, j) 
have already been obtained in Step 4, and sample-specific estimates of 
quantities P(j | birthweight) may be acquired by substituting sample-
specific estimates from Step 3 into the relation

P(j | birthweight) = pj f(birthweight; mj,sj) / ∑l=1
k pl f(birthweight; 

µl, σl).

Once sample-specific estimates of Equation (3) have been 
calculated, overall estimates and 95% confidence intervals may be 
obtained via formulas (6) and (7) in [21].

Step 6

Using each sample, estimate the probability of high risk 
classification, as a function of component membership. Then combine 
the sample-specific estimates into overall estimates and produce 95% 

confidence intervals. Symbolically, we need to estimate

P(high risk | component).				                  (4)

To do so, we employ the Law of Total Probability, which says that 
Equation (4) is equal to 

∫ P(high risk | birthweight, component) f(birthweight; µcomponent, 
σcomponent) d(birthweight).

Sample-specific estimates of P(high risk | birthweight, component) 
are available from Step 4, and sample-specific estimates of f(birthweight; 
µcomponent, σcomponent) can be derived from Step 3. Once sample-specific 
estimates of Equation (4) have been calculated, overall estimates and 
95% confidence intervals may be obtained via formulas (6) and (7) in 
[21].

Step 7

Using each sample, estimate the probability of membership in each 
component, among those with high risk classification. Then combine 
the sample-specific estimates into overall estimates and produce 95% 
confidence intervals. Symbolically, we wish to estimate

P(component | high risk).				                 (5)

To do this, we employ Bayes’ Theorem, which says that Equation 
(5) is equal to

P(high risk | component) pcomponent / 	  	

∑j=1
k P(high risk | j) pj.				  

Sample-specific estimates of quantities P(high risk | j) have already 
been obtained in Step 6, and sample-specific estimates of quantities pj 
have already been acquired in Step 3. Once sample-specific estimates 
of Equation (5) have been calculated, overall estimates and 95% 
confidence intervals may be obtained via formulas (6) and (7) in [21].

Empirical Investigation
To illustrate our analytic framework, we now describe an empirical 

investigation that we conducted using data publicly available from 
the Centers for Disease Control and Prevention via {http://www.cdc.
gov/nchs/data_access/vitalstatsonline.htm}. More specifically, we used 
United States birth-cohort-linked infant birth and death data (and fetal 
death data) from years 1998 to 2002, subject to the following inclusion/
exclusion criteria. First, we limited the maternal race to white, since 
relationships between mixture component membership and risk 
factors may differ by race; in fact, because there are documented 
racial differences in birthweight distribution [8], even the appropriate 
number of mixture components may depend on race. Likewise, we 
restricted attention to non-Hispanic mothers. Second, we included 
only records with known gestational ages of at least 22 weeks and 
known birthweights between 500 and 5500 g, as gestational ages less 
than 22 weeks or birthweights outside the indicated range may not 
be accurately documented [22]; we also omitted records with missing 
values on one or more of 16 variables in an initial list of risk factors. 
Third, we restricted attention to singleton births. This not only avoids 
a source of heterogeneity, inasmuch as multiple births tend to have 
smaller birthweights and gestational ages than singleton births [23,24], 
but also circumvents the problem that observations on multiple births 
are not statistically independent; our analytic framework assumes that 
observations within each sample are statistically independent. 

The above inclusion/exclusion criteria yielded an effective 
population size of 4,034,402, from which we drew Nrep = 25 samples 
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of size n = 50,000. The FLIC recommended a four-component mixture 
model for 23 of the samples, so that a four-component mixture model 
was adopted for the subsequent analyses. The overall estimates for the 
parameters in this model defined the probability density function

0.004 f(x; 908,249)+0.112 f(x; 2932,734)+0.820 f(x; 3416,427)+0.065 
f(x; 4044,431).					                      (6)

Thus, for example, if infants with a particular risk factor for LBW 
and infant mortality have an estimated probability of belonging to 
component 2 that is substantially greater than 0.112, then we may say 
that such infants have excess membership in component 2 (compared 
to infants more generally in the population of interest).

Following exploratory analyses of the first two samples in which 
point estimates of Equations (4) and (5), but not confidence intervals, 
were obtained for each variable in our initial list of 16 risk factors (results 
available from the corresponding author upon request), we narrowed 
our initial list of 16 risk factors to four risk factors that we then related 
to membership in the mixture model’s four components. The four risk 
factors were: (i) gestational age with a cutpoint of 29 weeks, strictly 
below which infants were severely premature and classified as high risk 
on that factor; (ii) maternal diabetes (including juvenile onset, adult 
onset, and gestational), the presence of which defined high risk on that 
factor; (iii) maternal chronic high blood pressure (HBP) (including 
diagnosis prior to pregnancy or before the 20th week of gestation), 
the presence of which defined high risk; and, (iv) maternal previous 
preterm birth, the presence of which defined high risk.

(Figures 1-4) Depict the estimated probabilities of high risk 
classifications on the four risk factors, as functions of both birthweight 
and component membership, along with (pointwise) 95% confidence 
bounds. Scaling on the vertical axes is logarithmic, and the curves 
are suppressed at birthweights more than three component standard 

deviations away from the corresponding component mean. In general, 
the confidence bounds tend to be wider at extreme birthweights than 
at relatively normal birthweights; this occurs because there are many 

Figure 1: Estimated probabilities of severe prematurity within each component 
as a function of birthweight. Displayed are estimated probabilities of severe 
prematurity (< 29 weeks) within each component as a function of birthweight, 
along with 95% confidence intervals. (Table 1) shows the estimated probabili-
ties of severe prematurity within each component, averaged over birthweight 
in the sense of Equation (4).

Figure 2: Estimated probabilities of maternal diabetes within each component 
as a function of birthweight. Displayed are estimated probabilities of maternal di-
abetes within each component as a function of birthweight, along with 95% confi-
dence intervals. (Table 1) shows the estimated probabilities of maternal diabetes 
within each component, averaged over birthweight in the sense of Equation (4).

Figure 3: Estimated probabilities of maternal chronic HBP within each compo-
nent as a function of birthweight. Displayed are estimated probabilities of ma-
ternal chronic HBP within each component as a function of birthweight, along 
with 95% confidence intervals. (Table 1) shows the estimated probabilities of 
maternal chronic HBP within each component, averaged over birthweight in 
the sense of Equation (4).
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more infants with relatively normal birthweights, so that probabilities 
of high risk classifications can be estimated more precisely for such 
infants.

Figure 4: Estimated probabilities of a previous preterm birth within each com-
ponent as a function of birthweight.
Displayed are estimated probabilities of a previous preterm birth within each 
component as a function of birthweight, along with 95% confidence intervals. 
(Table 1) shows the estimated probabilities of a previous preterm birth within 
each component, averaged over birthweight in the sense of Equation (4). Figure 5: Estimated probabilities of component membership as a function of 

birthweight among severely premature infants. Displayed are estimated prob-
abilities of component membership as a function of birthweight among severely 
premature infants (< 29 weeks), along with 95% confidence intervals. (Table 2) 
shows the estimated probabilities of component membership among severely 
premature infants, averaged over birthweight in the sense of Equation (5).

Component
Est. Probability of 
Prematurity (per 

1,000 births)

95% Confidence Interval

Lower Upper

1 1000.0 1000.0 1000.0
2 636.7 325.0 864.5
3 15.7 2.9 79.3
4 0.1 0.0 1.5

Component
Est. Probability of 
Maternal Diabetes 
(per 1,000 births)

95% Confidence Interval

Lower Upper

1 14.8 0.4 354.0
2 34.2 20.0 57.8
3 29.5 25.8 33.7
4 42.3 16.0 106.9

Component

Est. Probability of 
Maternal Chronic 
HBP (per 1,000 

births)

95% Confidence Interval

Lower Upper

1 16.4 0.1 777.7
2 15.6 8.4 29.0
3 7.1 5.4 9.4
4 6.5 1.1 37.6

Component

Est. Probability of 
Previous Preterm 
Birth (per 1,000 

births)

95% Confidence Interval

Lower Upper

1 46.9 5.2 315.1
2 38.3 23.0 63.0
3 8.5 5.1 14.0
4 5.5 1.8 16.7

Table 1: Estimated probabilities of risk factors within each component.
Displayed are estimated probabilities of severe prematurity (< 29 weeks), maternal 
diabetes, maternal chronic HBP, and a previous preterm birth within each compo-
nent, along with 95% confidence intervals.

Figure 6: Estimated probabilities of component membership as a function 
of birthweight among infants with diabetic mothers. Displayed are estimated 
probabilities of component membership as a function of birthweight among 
infants with diabetic mothers, along with 95% confidence intervals. (Table 2) 
shows the estimated probabilities of component membership among infants 
with diabetic mothers, averaged over birthweight in the sense of Equation (5).
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(Table 1) Presents the estimated probabilities of high risk 
classifications, as functions of component membership and averaged 
over birthweight per Equation (4), along with 95% confidence intervals. 
Of particular interest are the overlaps among the 95% confidence 
intervals for a given risk factor; the less overlap there is, the more 
indication we have that the risk factor is associated with component 
membership.

Gestational age is very strongly related to mixture component 
membership, as severe prematurity is ubiquitous within component 1, 
common within component 2, rare within component 3, and almost 
nonexistent within component 4. Maternal diabetes and maternal 
chronic HBP are less obviously related to mixture component 
membership. There is some suggestion that maternal diabetes may 
be most common in component 4 and least common in component 
1, with an opposite pattern for maternal chronic HBP. However, 
definitive conclusions are impeded by wide confidence intervals for 
components 1 and 4, which are in turn related to the relatively small 
proportions of infants in those components. The presence of a previous 
preterm birth is clearly related to mixture component membership, as 
indicated by separation of the component 2 confidence interval from 
the component 3 and component 4 confidence intervals. In addition, 
although the component 1 confidence interval is too wide to permit a 
definitive conclusion, there is some suggestion that the presence of a 
previous preterm birth may be even more prevalent in component 1 
than in component 2. 

(Figures 5-8) Depict estimated probabilities of component 
membership, as functions of birthweight among those with high risk 
classifications, along with 95% confidence bounds. (Table 2) Presents 
estimated probabilities of component membership, among those with 

Figure 7: Estimated probabilities of component membership as a function 
of birthweight among infants with mothers who have chronic HBP.Displayed 
are estimated probabilities of component membership as a function of birth-
weight among infants with mothers who have chronic HBP, along with 95% 
confidence intervals. Table 2 shows the estimated probabilities of component 
membership among infants with mothers who have chronic HBP, averaged 
over birthweight in the sense of Equation (5).

Figure 8: Estimated probabilities of component membership as a function of 
birthweight among infants with mothers who have a previous preterm birth. 
Displayed are estimated probabilities of component membership as a func-
tion of birthweight among infants with mothers who have a previous preterm 
birth, along with 95% confidence intervals. (Table 2) shows the estimated prob-
abilities of component membership among infants with mothers who have a 
previous preterm birth, averaged over birthweight in the sense of Equation (5).

Component Est. Probability of Membership 
among Premature (per 1,000 Births)

95% Confidence Interval
Lower Upper

1 45.7 25.0 82.0
2 782.0 538.0 917.0
3 149.0 31.2 487.8
4 0.0 0.0 1.6

Component
Est. Probability of Membership 
among Maternal Diabetic (per 1,000 
Births)

95% Confidence Interval

Lower Upper

1 2.1 0.1 52.6
2 120.3 69.4 200.4
3 772.3 669.0 850.6
4 85.1 29.3 222.9

Component
Est. Probability of Membership 
among Maternal Chronic HBP (per 
1,000 Births)

95% Confidence Interval

Lower Upper

1 7.8 0.0 612.7
2 201.3 94.0 379.7
3 690.9 503.0 831.6
4 59.3 9.3 298.0

Component
Est. Probability of Membership 
among Previous Preterm Birth (per 
1,000 Births)

95% Confidence Interval

Lower Upper

1 15.1 2.0 105.5
2 350.5 175.5 577.6
3 579.5 359.7 771.8
4 26.8 5.7 117.9

Table 2: Estimated probabilities of component membership among those with risk 
factors.
Displayed are estimated probabilities of membership within each component 
among infants born severely premature (< 29 weeks), to mothers with diabetes, to 
mothers with chronic HBP, and to mothers with a previous preterm birth, along with 
95% confidence intervals.
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high risk classifications and averaged over birthweight per Equation 
(5), along with 95% confidence intervals.

Even though severe prematurity is more common within 
component 1 than within component 2, the overall proportion of 
infants in component 2 is sufficiently larger than the overall proportion 
of infants in component 1 that a severely premature infant is most 
likely to belong to component 2. Membership in component 3 is 
not particularly common for a severely premature infant but is not 
especially rare either, inasmuch as the overall proportion of infants 
in component 3 is larger than the overall proportion of infants in all 
other components combined. However, a severely premature infant 
will almost never belong to component 4. Infants born to diabetic 
mothers and infants born to mothers with chronic HBP are most likely 
to belong to component 3, although the former infants appear to have 
a modest excess in component 4 while the latter infants seem to have a 
slight excess in component 2. Infants born to mothers with a previous 
preterm birth are most likely to be in component 2 or component 3, 
with a modest excess in component 1 and a slight dearth in component 4. 

Discussion
This article presented a new analytic framework for exhibiting 

relationships between latent variables representing components 
in a mixture model for birthweight distribution and various risk 
factors for LBW and infant mortality. Our framework builds upon 
the methodology of Charnigo and collaborators, who addressed 
the questions of how to choose the number of components in the 
mixture model [15] and how to estimate infant mortality within each 
component [21]. However, our efforts go beyond theirs in that we 
explicitly characterize the mixture components in terms of observable 
risk factors with biological meaning. In particular, we indicate how to 
estimate the probability that a risk factor is present within one of the 
mixture components as well as the probability of mixture component 
membership among infants for whom a risk factor is present. 

While our characterizations of the mixture components are 
probabilistic rather than deterministic, they nonetheless provide insight 
into how decision makers might best allocate resources for educational 
activities and other interventions directed at women who are or who 
may become pregnant. Indeed, the analyses presented in this article for 
white singletons regarding gestational age, maternal diabetes, maternal 
chronic HBP, and previous preterm birth can be repeated for other 
populations and regarding other risk factors, including risk factors that 
are modifiable (such as maternal tobacco use, alcohol use, infrequent 
prenatal visits, and poor oral hygiene, to name a few). If the presence 
of one modifiable risk factor substantially increases the probability of 
membership in a component with a higher incidence of LBW or infant 
mortality, while the presence of another modifiable risk factor does 
not, then - all else being equal - the former modifiable risk factor is a 
more suitable target for interventions. 

For example, suppose that infant mortality is 100/20/6/8 per 
1,000 births in the four components respectively and that component 
membership probabilities are 1/15/75/9 when modifiable risk factor 
“A” is present, 0/7/90/3 when “A” is absent, 1/14/78/7 when modifiable 
risk factor “B” is present, and 0/8/87/5 when “B” is absent. Then infant 
mortality is estimated to be 9.22 per 1,000 births when “A” is present, 
7.04 when “A” is absent, 9.04 when “B” is present, and 7.22 when “B” 
is absent. So, if interventions targeting “A” and “B” are equally costly 
and equally effective at removing the modifiable risk factor, then the 
intervention for “A” is favored because of its greater impact on infant 
mortality. In fact, the preceding computations are conservative since 

removing “A” or “B” may impact infant mortality in two ways: by shifting 
component membership probabilities toward favorable components 
(in the sense of lower infant mortality), which is incorporated into the 
above calculations, and by reducing infant mortality within any given 
component, which is not built into the above computations and which 
will be a topic for future research. Of course, one may also perform 
similar calculations for LBW, preterm birth, or small-for-gestational 
age, rather than for infant mortality.

Our empirical investigation has several limitations. Some 
limitations were inherited from the data and were not issues with our 
analytic framework per se. The samples we drew might have reflected a 
selection bias since missing values might not have occurred at random 
on some risk factors. Moreover, some variables potentially related 
to mixture component membership, such as maternal oral hygiene, 
were not available from the data. Additionally, imperfections in 
documenting diabetes and hypertension on birth certificates may have 
obscured these risk factors’ associations with component membership; 
a way to overcome this limitation in future research may be to use a 
linked birth certificate-maternal hospital discharge database [25].

One limitation was more conceptual in nature. The FLIC led us 
to a four component mixture model, and we then related those four 
components to observable risk factors with biological meaning. 
However, a researcher does well to remember the distinction between a 
statistical model and the natural phenomenon being described by it; in 
particular, the four component mixture model is only a mathematical 
approximation to a birthweight distribution. Even so, the four 
component mixture model may prove useful in reducing the incidence 
of LBW and infant mortality, by informing the allocation of resources 
for educational activities and other interventions targeting modifiable 
risk factors. If there had been ambiguity about the appropriate number 
of components, in that the FLIC had recommended (say) a four-
component model for 13 samples and a six-component model for 12 
samples, then we could have performed the subsequent analyses for 
both a four-component model and a six-component model. However, 
if applied to estimate the potential benefits of educational activities 
and other interventions as in the hypothetical example with modifiable 
risk factors “A” and “B”, four-component and six-component models 
might yield different conclusions. In that case, one might calculate a 
weighted average of the estimated potential benefits based on the two 
models, the weight for each model proportional to the number of times 
that model had been recommended by the FLIC.

Other limitations were analytical; in fact, these limitations suggest 
the next steps for methodological development. First, we treated the 
risk factors as dichotomous. However, many risk factors are naturally 
continuous (or, at least, interval level); a statistical model that could 
accommodate the gradations inherent to such risk factors might be more 
realistic and might therefore better serve the ultimate goal of reducing 
the incidence of LBW and infant mortality. Second, we examined each 
risk factor separately. A desirable pursuit for future research would be 
to assess multiple risk factors simultaneously, so that we could estimate, 
for example, the probabilities of mixture component membership for 
infants whose mothers had both diabetes and chronic HBP but not a 
previous preterm birth. Third, a valuable task for future research would 
be to explicitly incorporate infant mortality, birthweight, and the risk 
factor(s) into a single, unified statistical model. This would permit 
estimating the full impact on infant mortality of removing a modifiable 
risk factor, not just the contributions from shifting component 
membership probabilities toward favorable components but also the 
benefits from reducing infant mortality within any given component.
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Finally, while the analytic framework described in this article 
was motivated by the task of characterizing components in a mixture 
model for birthweight distribution (and the ultimate goal of reducing 
the incidence of LBW and infant mortality), one may apply the 
statistical tools from this analytic framework to problems in other 
biological arenas that employ mixture modeling, such as describing the 
differential expression of genes among patients afflicted with an illness 
versus healthy controls [26]. 
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