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Abstract

Canonical bases for (n-1)-dimensional subspaces of n-dimensional vector space are introduced and classified
in the article. This result is very prospective to utilize canonical bases at all applications. For example, maximal

subalgebras of Lie algebras can be found using them.
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Introduction

The canonical bases for (n-1)-dimensional subspaces of n—
dimensional vector space are introduced in the article, and all
nonequivalent of them are classified (Theorem 2). This result generalizes
a particular result for 5-dimensional subspaces of 6-dimensional vector
space obtained in the previous article of the same author. To analyze the
general case, reduced row echelon forms of matrices are utilized; about
reduced row echelon forms [1]. In addition to the principal result, all
nonequivalent reduced row echelon forms for (n—1)xn matrices of the
rank (n—1) are found and listed (Theorem 1).

Let V be an n— dimensional vector space with its standard basis

e.er,ne, - Let a,a,,...a,_ be n - 1 linearly independent vectors in
the space V where

a,=a; e +a,¢, +...+a

etota c. (I)

8, =26, 8,8 +...+8,,¢ n-11%1 n-1n n®

2 Chaeeens @y =

a
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The vectors (I) describe the possible bases for any V -dimensional
subspace S of V.

Definition 1

Two bases are called equivalent if they generate the same subspace
of V, and they are called nonequivalent if they generate two different
subspaces of VK

We will associate the following (n—1) xn matrix M with a basis (I)

all alZ aln
a a e @
21 22 2n
M= (ID)
an—],l an—l,Z an—l,n
Definition 2

Two matrices are called row equivalent (or just equivalent) if
they have the same reduced row echelon form, and they are called
nonequivalent if they have different reduced row echelon forms.

Definition 3

The basis (I) is called canonical if its vectors aj,a,,...a,, are the
corresponding rows in some reduced row echelon form of the matrix M.

Thus, there is one-to-one correspondence between nonequivalent
canonical bases for (n—1)-dimensional subspaces of n—dimensional
vector space and reduced row echelon forms for (n—1) xn matrix M.

Remark

The standard linear operations with rows (vectors) will be utilized:

(a) interchange any two rows, (b) multiply any row by a nonzero
constant, (c) add a multiple of some row to another row.

Consider some examples with nonequivalent canonical bases for
subspaces of small dimensional vector spaces.

Ex1

Let V be 2-dimensional vector space with its standard basis e, , e, .
Each 1-dimensional subspace S of V can be described as S = Span{a,}

a, of the

where a, = a, ¢, + ae, . At least one component among a,,
vector @, is not zero. If a ,#0 then perform the operation g, / a,,, and
we obtain the first canonical basis {¢, + a,,¢,} . If a,,=0 then perform
the similar operation a,/ a,, , and we obtain the second canonical basis
{e,}- These two canonical bases are nonequivalent [2].

Ex2

Let V be 3-dimensional vector space with its standard basise,, e, ,e, .
Consider any 2-dimensional subspace S of V that can be described as
S = Span{a,,a,} where

a,=a; ¢ +a,e,+a;¢;,a,=2a,¢ +2a,¢, +2a,¢;.

This basis is equivalent to one and only one canonical basis from
the next list

1. a, =¢ +a,e,,a, =€, +aye,. 2. a,=¢,+2,8,,a,=¢;. 3.8 ,=€,,a,=¢,.

Details of evaluation are omitted because it is easy. These last
canonical bases generate the following matrices associated with them

10
(1){ alg},(z) {1 a, 0},(3) {0 1 o]
0 1 a, 0 0 1 0 0 1

Ex3

Let V be 6-dimensional vector space with its standard basis, ,
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can be described as S = Span{a,,a,,a;,a,,as} where

a4, =0y,€ + 0,6, T a36,+ A, €, + A58 + A€, Uy = Ay €+ Uy € + Uy3 €+ Uy, €4+ Ays €5+ Ay 6,
Ay =0y, € + a3 €) + 0330+ 0y, @, + 355 + A8, A, = Ay € T dpe, Taue; +a,e, + a6 +a,6

as =das e + as, €, +a53€3 + as,e, + 5565 +a566‘6 .

These bases can be transformed into one and only one canonical
basis from the next list

_z S T S o S o =g S g = 5 (a
a =e +a16e6, a, =e, +a2566, a; =e; +a3<,eé, a, =e, +a46e5,a5 =es +a56(36 > ( 1)

a =€ ta;565, a) =€, +a,,€5,d; =€+ Ay565,d, =€, + 565, ds =€ 5 (az)

a,=e +a,e,,a,=e +a,e,,a,=e+a,e, a,=e,a,=¢;; (a,)

a, =e +ase;, a,=e,+ta,e,a;,=¢e,,a,=¢e;,d; =¢; (a)
a,=e+a,e,,a,=e,a,=e,,d,=6€,d; =¢; (a,)
a,=e,,a,=e,,d;,=€,,d, =€, d; =€ . (a)

All these canonical bases are nonequivalent. This result is obtained
by the direct evaluation that generalizes Gauss-Jordan elimination
method. The necessary details can be found in the different article of
the same author [3].

The following matrices are associated with the last canonical bases
(a) - (a):

10000 a1t 000a; 0][100a 00
01 000 af |01 00 a 0/[010a 00
00100 a[>{0010a 05/00T1a 00
00010 a/l|000T1ea O |000 0 1 0
00001 af 0000 0 1000 0 01
[1 0 a, 00 0] [1 @ 000 O0][0 10000
01 a, 000/{0 0 100O0[|00T1000
00 0 1 000 0 0100O0[>000T1°0 0|
00 01 0/]0 0 00T10/[0000T1°0
10 0 00 1/]/0 0 000 T1/]{00000°1

The matrices obtained in Examples 2 and 3 are particular cases of
the following matrices described by the next statement.

Theorem 1

All nonequivalent reduced row echelon forms of (1—1)xn matrices
(n 3) of the rank (n—1) are

(1 0 0 .. 0 a, 100 .0 g, ©0
10 ..0 0

010 ..0 a, 2
001 .0 a,, 0
mfo o1 ..0 a,| @ ,
00 .. 1 a,,, 0
000 1 a,, 000 .0 0 1]
0 . 0 a,, 00 10 .0 a,, 000
01 0 a. 00 01 .0 a,, 000
@ - L @00 .1 g, 00 0]
00 ..14a,,, 00 b0 0 o 100
0.0 o0 1 00..0 0 010
00 .0 0 0 1] 00 ..0 0 00 1]
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1 a, 00 .. 00 0100 00

00 10 ..000 0 10 ..00

00 01 ..00O 0 01 .. 00
(n-1) 5 (n)

00 00 010 00 1 o

0 0 00 00 1 0 0 01
Proof

We use the mathematical induction method. The statement is true
for n=3 and n=6 according Examples 2 and 3.

Suppose that the statement is true for some dimension #, and prove
it for the next dimension »n + 3. For it, consider the following matrix of
the size n x(n+1)

ay, ap 4y, a1
ay Ay e Uy, Ay p41
M'=
Ay Quorp o Qg Guopnn
anl anz an?n an,n+1

Go to the (n—1) xn submatrix located in the left upper corner of M'.
According the assumption, this submatrix can be transformed into one
and only one reduced row echelon form described in the cases (1), (2),
(3), (4), ....(n-1), (n). This means that we can replace the mentioned
submatrix by one of the given reduced forms, and analyze the new
matrix. We will analyze and show all details in steps 1, 2, 3, and steps
(n-1), (n). All other steps are very similar to the steps 1, 2, 3, therefore
they are omitted.

Step 1

Substitute the left upper (n—1) xn submatrix in M by the matrix
(1). We have the following matrix

1 0 0 .. 0 A, A pi1
o 1 0 .. O a,, .,
M, _ O 0 1 0 a3n a3.n+l
0 0 0 .. 1 Ayt Cpotnnl
L% Gy Gy Aot Gun Qppur |

obtain

10 0 a, (20
010 0 a, s i1
00 0 a, A3 41

06000 ..14a,, a
000 ..0 a a

n.n n,n+l

n-l,n+1

Consider the elements a, ,a . in the last matrix. At least one
of them is not zero because the rank of the matrix M’' is equal n. If
a_  # 0 then perform the operation a,/a,, first, and the operations

a, na after the first one. We obtained the matrix

al_alna n-1— %
00 ..00 aqa, |
10 ..00

01 .. 00

Ay ni1

A3 041

00 .. 10 [
00 .. 01 a

n.n+l |
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This is the matrix of the type (1) as it’s needed. If a, =0 then
a_ # 0. Perform the operation @,/a,,,, first, and the operations

n, n+l
Lo 00 ..0 0 1J.We0btainthematrix

00 ..0 a, O

0 .. 0 a O
01 . 0 a,
p O
000 .0 0 1]
This is the matrix of the type (2) as it’s needed. Step 1 is done.

000 .. 1 ga

Step 2

Substitute the left upper (n-1) xn submatrix in M by the matrix
(2). We have

1 0 0 0 . a, 0 a,,
01 0 0 .. a,, 0 a,,
0O 0 1 0 .. a,, 0 A3 01
M'=| . . . R .
0o 0 0 0 . a,,, 0 a,,,
0 0 0 0 .. 0 Loa, .,
a, a, a, a, T

Perform the operations, «,-a,a;.a,-a,,d;,...a,~4,,.4, 5, 4,~4,,d, .
We obtain

000 .. w4, 0 a,
01060 .. a4, 0 a,,
0010 .. A3 1 0 3 41
0000 .. [ 0 [y
00 00 .. 0 1 oa, .,
0000 .. «a 0 aq

n,n—1 n,n+l |

At least one element among a, , 4 is not zero. If a, #

n, n+l nl

0 then perform the operation a,/a first, and the operations

a,—a, \a,,a,~a,, a,,....d, ,—4a, ,, a, after the first operation.

n,n—1

We obtain the following matrix
[1 0 0 0 00 a,, |
0100 .00
0010 ..00

a3 i1
A3 041
0000 ..00 a,,,
0000 ..01 a_,,
L 000 .. 10 a

The last matrix is row equivalent to the matrix (1) as it’s needed.
If a, =0 then Ay n® Oferfo&the operation 4,/a,,,, first, and

the operations @, —aq,,,,4,,...., a —anqmla after the first one. We
obtain the following matrix

nn+l |

n—1

[1 000 .. a,, 00
0100 a,,, 0

0010 . a, 00
0000 a4 5,q 0 0
0000 0 10
0000 0 0 1]

The last matrix is a matrix of the type (3) as it’s needed.

Step 3

Substitute the left upper (n—1) xn submatrix in M by the matrix
(3). We have

1 0 0 a, , 0 0 a . 1
0 1 0 a,,_, 0 0 ay
M'=| 0 0 Ay 302 0 0 a,,,,
0 CR—.
0 0o .. 0 0 0 A,
Gy G Gy 4,y G,y G Gy, G |

Perform the operations « -a,a.a, -a,a,....a, —a,, ,a, ,.a —a, a, .
We obtain

(1o .0 a,, 00 a,, |
o1 .0 a,, O a0
00 1 a,,, 00 a.,,
00 o 0 10 a,,,
00 .0 0 01 a,,
0000 a,, 00 a,, |

is not zero in this matrix.

n, n+1

At least one element among a  .a

If a, . then perform the operation @,/a,,_, first, and the operations

a—a;, ,a,,d, =y, ,4,,.....,d, y—4d, 5, ,a, after the first operation.
We obtain the following matrix

(10 ..0000 a,,
01 ..0000 a,,
00 1000 a,,,
00 ..0010a,,,
00 ..000T1 a,,
00 ..0100 a,,

The last matrix is row equivalent to the matrix (1) as it’s needed.
first, and

the operations @, — @, ,,,4,, ......a, ; —a, ., a, after the first one. We
obtain the following matrix

Ifa , _,=0thena #0.Perform the operation a la

n,n+l

10 .. 0 a,, 00 0]
01 .0 a,, 000
00 1 a,.,,, 000
00 .0 0 1200
00 .0 0 010
00 ..0 0 00 1]

We have the matrix that is equivalent to the matrix of the type (4)
as it’s needed.

Step (n—1). Substitute the left upper (n—1) xn submatrix in M’ by
the matrix (n—1). We have
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i a, 0 0o .. 0 0 a0 i
o 0 1 0 .. 0 0 a,,
0 0 1 .. 0 0 oa,,
M'= .
o o0 o0 o0 .. 1 0 a,,,.,
o 0 0 0 . 0 1 a,,.,
L9t Gy Gusz G e Gy Gy Gy
Perform the operationsa,-a,,q,4,-a,,a,.....a,-a,, 4, ,.4,-4a,,a,, .
We obtain
(1 a, 00 .. 00 a,, |
0 0 10 0 a,,

00 01 .00 a,,

0 0 00 ..10 a,,,
0O 0 00 .. 01 a
0 a

n—l,n+1

00 .. 00 a«a

n2 nn+l |

At least one element among a 2 Dy is not zero in this matrix.

If a, ,#0 then perform the operatlon a,/a,, first, and the operation

a - alz Z after the first operation. We obtam the following matrix

1000 .00 a,,
0010 .00 a,,
0001 ..00 a,,

0000 .10 a,,,
0000 .01 a,,,
0100 ..00 a

n,n+l |

If interchange rows in the last matrix, we obtain the matrix (1) as
it's needed. If a_ ,=0 then a_  #0. Perform the operation «,/a,,.,

, 2 —
first, and the operatlons 4 =a,,a,,...a, —a,, . a, after the first

one. We obtain the following matrix
l g, 00 .. 00 0]

0 10 ..000
0 0 01 .. 000

0 00 .. 010
0o 0 00 .. 0O

It is the matrix of the type (n-1) as we need.
Step n

Substitute the left upper (n—1) xn submatrix in M by the matrix
(n). We have

0 1 0 o .. 0 0 A1
0 0 1 0 A3 a1
0 0 0 1 .. 0 0 A3 1
M'= .
0 0 0 0o .. 1 0 [y
0 0 0 0 0 Ayt 1
L%t G oy Gua oo Gy Gy Gy |

Performtheoperations a, -a, ,4,,a, - a, ,a,,....a, - a,, \a, ,.a, -4, ,a
We obtain

nn-1%n-2> non @t

0 100 ..00 a,,
0010 ..00 a,,
0 001 ..0

(=]

a5 41
0 00 0 .. 1 0 a

0 n—=1,n+1
000 ..00O0 a

n-2,n+1

a

—_

n,1

n,n+1

At least one element among a_ , a__ is not zero in this matrix.

n, 1”
If a, #0 then perform the operation 4, /a,, and interchange the

rows. We obtain the matrix of the type (1) as it'’s needed. If a_ =0

thena__ 0. Perform the operation @, /@, ,., first, and the operations,

a4 —a,, 4, a,  —a, . a, afterthefirstone. We obviously obtain

n-1

the matrix of the type (n) as it’s needed. The proof is done.

Theorem 1 can be transformed into the next statement that
describes canonical bases for (n—1) —dimensional subspaces of n—
dimensional vector space.

Theorem 2

All nonequivalent canonical bases for (n-1) —dimensional
subspaces of n—dimensional vector space (if (n>2)) are

(1) a—l = e—l +alnen’ ‘Z =6 +a2ne—n’a—3 =€ +a3ne—n’ ----- ’a T +ta, 1,:16—»1;

(2) 0—1 = ;1 + al.n—la’az = ez + az,n—len_—l's""oa = ‘Z + an—z.n—la=a = e—n;

() @ =610y, 20,00 =6+ @y 10, 3 Gy 3 =0+, 520, 100y 3 =6 1A, =y

(1) @ =€ +a,6;, @y = €3,05 = €y 3 =€, 3,0, 3 =€, 1,0, =€,

(M) g =e,a,=e.a,=¢00, =€, 5,0, ,=¢, .4, =6,

The statement is true for n>3 because of Theorem 1. The additional
case n = 2 is included in Theorem 2 because of Example 1.

Final Remark

The canonical bases introduced in the article are a powerful
instrument that can be utilized in all applications of Linear Algebra.
For example, all maximal subalgebras of any Lie algebra can be found
using canonical bases listed in Theorem 2.

References

1. Holt J (2013) Linear Algebra with Applications, W.H. Freeman and Company,
New York.

2. Bincer AM (2012) Lie Groups and Lie Algebras — A Physicist's Perspective.
Oxford University Press.

3. Shtukar U (2016) Canonical Bases for Subspaces of a Vector Space, and
5-dimensional Subalgebras of Lie Algebra of Lorentz Group. Journal of
Generalized Lie Theory and Applications 10: 1.

J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

Volume 10 « Issue 1+ 1000241


http://www.macmillanlearning.com/catalog/static/whf/holtpreview/
http://www.macmillanlearning.com/catalog/static/whf/holtpreview/
http://dx.doi.org/10.1063/1.522992
http://dx.doi.org/10.1063/1.522992
http://dx.doi.org/10.1063/1.523441
http://dx.doi.org/10.1063/1.523441
http://www.oupjapan.co.jp/en/node/8153
http://www.oupjapan.co.jp/en/node/8153

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Final Remark 
	References

