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Abstract
Canonical bases for (n-1)-dimensional subspaces of n-dimensional vector space are introduced and classified 

in the article. This result is very prospective to utilize canonical bases at all applications. For example, maximal 
subalgebras of Lie algebras can be found using them.
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Introduction
The canonical bases for (n-1)-dimensional subspaces of n− 

dimensional vector space are introduced in the article, and all 
nonequivalent of them are classified (Theorem 2). This result generalizes 
a particular result for 5-dimensional subspaces of 6-dimensional vector 
space obtained in the previous article of the same author. To analyze the 
general case, reduced row echelon forms of matrices are utilized; about 
reduced row echelon forms [1]. In addition to the principal result, all 
nonequivalent reduced row echelon forms for (n−1)×n matrices of the 
rank (n−1) are found and listed (Theorem 1). 

Let V be an n− dimensional vector space with its standard basis

1 2, ,...., ne e e
  

. Let 1 2 1, ,..., na a a −

  

be n − 1 linearly independent vectors in 
the space V where

1 11 1 12 2 1n n 2 21 1 22 2 2n n n 1 n 1,1 1 n 1,n na a e a e ... a e , a a e a e ... a e ,....,a a e ... a e .− − −= + + + = + + + = + +
             (I)

The vectors (I) describe the possible bases for any V -dimensional 
subspace S of V. 

Definition 1

Two bases are called equivalent if they generate the same subspace 
of V, and they are called nonequivalent if they generate two different 
subspaces of V. 

We will associate the following (n−1) ×n matrix M with a basis (I)

11 12 1

21 22 2

1,1 1,2 1,

....

....
.. .. .. ..

....

n

n

n n n n

a a a
a a a

M

a a a− − −

 
 
 =  
 
  

(II)

Definition 2

Two matrices are called row equivalent (or just equivalent) if 
they have the same reduced row echelon form, and they are called 
nonequivalent if they have different reduced row echelon forms. 

Definition 3

The basis (I) is called canonical if its vectors 1 2 1, ,..., na a a −

  

 are the 
corresponding rows in some reduced row echelon form of the matrix M.

Thus, there is one-to-one correspondence between nonequivalent 
canonical bases for (n−1)-dimensional subspaces of n−dimensional 
vector space and reduced row echelon forms for (n−1) ×n matrix M.  

Remark

The standard linear operations with rows (vectors) will be utilized: 

(a) interchange any two rows, (b) multiply any row by a nonzero

Consider some examples with nonequivalent canonical bases for
subspaces of small dimensional vector spaces.

Ex 1

Let V be 2-dimensional vector space with its standard basis 1e


, 2e


. 
Each 1-dimensional subspace S of V can be described as 1{ }S Span a=



 
where 1 11 1 12 2a a e a e= +

  

. At least one component among a11, a12 of the 

vector 1a


 is not zero. If a12≠0 then perform the operation 1 12/a a


, and 
we obtain the first canonical basis 1 12 2{ }e a e+

 

. If a12=0 then perform 
the similar operation 1 12/a a



, and we obtain the second canonical basis
2{ }e


Ex 2

Let V be 3-dimensional vector space with its standard basis 1 2 3, ,e e e
  

. 
Consider any 2-dimensional subspace S of V that can be described as 

1 2{ , }S Span a a=
 

 where

1 11 1 12 2 13 3 2 21 1 22 2 23 3a a e a e a e , a a e a e a e .= + + = + +
       

This basis is equivalent to one and only one canonical basis from 
the next list

1. 1 1 13 3 2 2 23 3a e a e ,a e a e .= + = +
     

 2. 1 1 12 2 2 3a e a e , a e .= + =
    

  3. 1 2 2 3a e , a e .= =
   

  Details of evaluation are omitted because it is easy. These last 
canonical bases generate the following matrices associated with them

(1) 13

23

1 0
0 1

a
a

 
 
 

, (2) 121 0
0 0 1

a 
 
 

, (3) 0 1 0
0 0 1
 
 
 

. 

Ex 3

Let V be 6-dimensional vector space with its standard basis, ,

. These two canonical bases are nonequivalent [2].

. 

constant, (c) add a multiple of some row to another row.
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1 2 3 4 5 6e ,e ,e ,e ,e ,e
     

. Consider any 5-dimensional subspace S of V that 
can be described as 1 2 3 4 5{ , , , , }S Span a a a a a=

    

 where

1 11 1 12 2 13 3 14 4 15 5 16 6 2 21 1 22 2 23 3 24 4 25 5 26 6, ,a a e a e a e a e a e a e a a e a e a e a e a e a e= + + + + + = + + + + +
             

3 31 1 32 2 33 3 34 4 35 5 36 6 4 41 1 42 2 43 3 44 4 45 5 46 6e ,a a e a e a e a a e a e a a e a e a e a e a e a e= + + + + + = + + + + +
             

5 51 1 52 2 53 3 54 4 55 5 56 6a a e a e a e a e a e a e= + + + + +
      

. 

These bases can be transformed into one and only one canonical 
basis from the next list 

1 1 16 6 2 2 26 6 3 3 36 6 4 4 46 6 5 5 56 6, , , ,a e a e a e a e a e a e a e a e a e a e= + = + = + = + = +
               ;  (a1)

1 1 15 5 2 2 25 5 3 3 35 5 4 4 45 5 5 6, , , ,a e a e a e a e a e a e a e a e a e= + = + = + = + =
             

;  (a2)

1 1 14 4 2 2 24 4 3 3 34 4 4 5 5 6, , , ,a e a e a e a e a e a e a e a e= + = + = + = =
            

;     (a3)

1 1 13 3 2 2 23 3 3 4 4 5 5 6, , , ,a e a e a e a e a e a e a e= + = + = = =
           

;              (a4)

1 1 12 2 2 3 3 4 4 5 5 6, , , ,a e a e a e a e a e a e= + = = = =
          

;                                                          (a5)

1 2 2 3 3 4 4 5 5 6, , , ,a e a e a e a e a e= = = = =
         

 .                                                                        (a6)

All these canonical bases are nonequivalent. This result is obtained 
by the direct evaluation that generalizes Gauss-Jordan elimination 
method. The necessary details can be found in the different article of 

The following matrices are associated with the last canonical bases 
(a1) – (a6):

16

26

36

46

56

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

a
a
a
a
a

 
 
 
 
 
 
  

, 

15

25

35

45

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0 1

a
a
a
a

 
 
 
 
 
 
  

, 

14

24

34

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a
a
a

 
 
 
 
 
 
  

,  

13

23

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a
a

 
 
 
 
 
 
  

, 

121 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a 
 
 
 
 
 
  

,

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 
 
 
 
 
 
  

.

The matrices obtained in Examples 2 and 3 are particular cases of 
the following matrices described by the next statement. 

Theorem 1

All nonequivalent reduced row echelon forms of (n−1)×n matrices 
(n  3) of the rank (n−1) are

(1)

1

2

3

1,

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . ... . .
0 0 0 ... 1

n

n

n

n n

a
a
a

a −

 
 
 
 
 
 
 
 

,    (2)  

1, 1

2, 1

3, 1

2, 1

1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . . .
0 0 0 ... 1 0
0 0 0 ... 0 0 1

n

n

n

n n

a
a
a

a

−

−

−

− −

 
 
 
 
 
 
 
 
  

,         

(3)

1, 2

2, 2

3, 2

1 0 ... 0 0 0
0 1 ... 0 0 0
. . ... . . . .
0 0 ... 1 0 0
0 0 ... 0 0 1 0
0 0 ... 0 0 0 1

n

n

n n

a
a

a

−

−

− −

 
 
 
 
 
 
 
 
  

,   (4)  

1, 3

2, 3

4, 3

1 0 ... 0 0 0 0
0 1 ... 0 0 0 0
. . ... . . . . .
0 0 ... 1 0 0 0
0 0 ... 0 0 1 0 0
0 0 ... 0 0 0 1 0
0 0 ... 0 0 0 0 1

n

n

n n

a
a

a

−

−

− −

 
 
 
 
 
 
 
 
 
 
 

,

………………………………………………………………………

(n-1)

121 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
0 0 0 1 ... 0 0 0
. . . . ... . . .
0 0 0 0 ... 0 1 0
0 0 0 0 ... 0 0 1

a 
 
 
 
 
 
 
 
  

,           (n)  

0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
. . . . ... . .
0 0 0 0 ... 1 0
0 0 0 0 ... 0 1

 
 
 
 
 
 
 
 
  

.

Proof 

We use the mathematical induction method. The statement is true 
for n=3 and n=6 according Examples 2 and 3. 

Suppose that the statement is true for some dimension n, and prove 
it for the next dimension n + 3. For it, consider the following matrix of 
the size n ×(n+1)

11 12 1 1, 1

21 22 2 2, 1

1,1 1,2 1, 1, 1

1 2 , , 1

...

...
. . ... . .'

...

...

n n

n n

n n n n n n

n n n n n n

a a a a
a a a a

M
a a a a
a a a a

+

+

− − − − +

+

 
 
 
 =
 
 
 
 

.

Go to the (n−1) ×n submatrix located in the left upper corner of M′. 
According the assumption, this submatrix can be transformed into one 
and only one reduced row echelon form described in the cases (1), (2), 
(3), (4), ….(n−1), (n). This means that we can replace the mentioned 
submatrix by one of the given reduced forms, and analyze the new 
matrix. We will analyze and show all details in steps 1, 2, 3, and steps 
(n-1), (n). All other steps are very similar to the steps 1, 2, 3, therefore 
they are omitted.

Step 1

Substitute the left upper (n−1) ×n submatrix in M  by the matrix 
(1). We have the following matrix

1 1, 1

2 2, 1

3 3, 1

1, 1, 1

1 2 3 , 1 , , 1

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

'
. . . ... . . .
0 0 0 ... 1

...

n n

n n

n n

n n n n

n n n n n n n n n

a a
a a
a a

M

a a
a a a a a a

+

+

+

− − +

− +

 
 
 
 

=  
 
 
 
  

.

Perform the following operations 1 1 2 2 , 1 1, ,.....,n n n n n n n na a a a a a a a a− −− − −
     

. We 
obtain

1 1, 1

2 2, 1

3 3, 1

1, 1, 1

, , 1

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . ... . . .
0 0 0 ... 1
0 0 0 ... 0

n n

n n

n n

n n n n

n n n n

a a
a a
a a

a a
a a

+

+

+

− − +

+

 
 
 
 
 
 
 
 
  

.                 

Consider the elements an,n , an, n+1 in the last matrix. At least one 
of them is not zero because the rank of the matrix M′  is equal n. If 
an,n ≠ 0 then perform the operation ,/n n na a



 first, and the operations 
1 1 1 1,,.....,n n n n n na a a a a a− −− −
   

 after the first one. We obtained the matrix

1, 1

2, 1

3, 1

1, 1

, 1

1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . . .
0 0 0 ... 1 0
0 0 0 ... 0 1

n

n

n

n n

n n

a
a
a

a
a

+

+

+

− +

+

 
 
 
 
 
 
 
 
  

.    

the same author [3]. 
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This is the matrix of the type (1) as it’s needed. If an, n = 0 then 
an, n+1≠ 0. Perform the operation , 1/n n na a +



 first, and the operations 

1

2

3

1,

1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . . .
0 0 0 ... 1 0
0 0 0 ... 0 0 1

n

n

n

n n

a
a
a

a −

 
 
 
 
 
 
 
 
   . We obtain the matrix

1

2

3

1,

1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . . .
0 0 0 ... 1 0
0 0 0 ... 0 0 1

n

n

n

n n

a
a
a

a −

 
 
 
 
 
 
 
 
  

.    

This is the matrix of the type (2) as it’s needed. Step 1 is done.

Step 2

Substitute the left upper (n−1) ×n submatrix in M  by the matrix 
(2). We have

1, 1 1, 1

2, 1 2, 1

3, 1 3, 1

2, 1 2, 1

1, 1

1 2 3 4 , 1 , 1

1 0 0 0 ... 0
0 1 0 0 ... 0
0 0 1 0 ... 0
. . . . ... . . .'
0 0 0 0 ... 0
0 0 0 0 ... 0 1

...

n n

n n

n n

n n n n

n n

n n n n n n nn n n

a a
a a
a a

M
a a

a
a a a a a a a

− +

− +

− +

− − − +

− +

− +

 
 
 
 
 

=  
 
 
 
 
 

.  

Perform the operations, 1 1 2 2 , 2 2 , 1, ,...., ,n n n n n n n n n n n na a a a a a a a a a a a− − −− − − −
       

. 
We obtain

1, 1 1, 1

2, 1 2, 1

3, 1 3, 1

2, 1 2, 1

1, 1

, 1 , 1

1 0 0 0 ... 0
0 1 0 0 ... 0
0 0 1 0 ... 0
. . . . ... . . .
0 0 0 0 ... 0
0 0 0 0 ... 0 1
0 0 0 0 ... 0

n n

n n

n n

n n n n

n n

n n n n

a a
a a
a a

a a
a

a a

− +

− +

− +

− − − +

− +

− +

 
 
 
 
 
 
 
 
 
 
 

.  

At least one element among an, n1, an, n+1 is not zero. If an, n1≠ 
0 then perform the operation , 1/n n na a −



 first, and the operations 

1 1, 1 2 2, 1 2 2, 1, ,....,n n n n n n n na a a a a a a a a− − − − −− − −
     

 after the first operation. 

We obtain the following matrix

1, 1

2, 1

3, 1

2, 1

1, 1

, 1

1 0 0 0 ... 0 0
0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
. . . . ... . . .
0 0 0 0 ... 0 0
0 0 0 0 ... 0 1
0 0 0 0 ... 1 0

n

n

n

n n

n n

n n

a
a
a

a
a
a

+

+

+

− +

− +

+

 
 
 
 
 
 
 
 
 
 
 

.   

The last matrix is row equivalent to the matrix (1) as it’s needed. 
If an, n−1=0 then an, n+1≠ 0. Perform the operation , 1/n n na a +



 first, and 
the operations 1 1, 1 1 1, 1,....,n n n n n na a a a a a+ − − +− −

   

after the first one. We 
obtain the following matrix

1, 1

2, 1

3, 1

2, 1

1 0 0 0 ... 0 0
0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
. . . . ... . . .
0 0 0 0 ... 0 0
0 0 0 0 ... 0 1 0
0 0 0 0 ... 0 0 1

n

n

n

n n

a
a
a

a

−

−

−

− −

 
 
 
 
 
 
 
 
 
 
 

.  

The last matrix is a matrix of the type (3) as it’s needed.

Step 3

Substitute the left upper (n−1) ×n submatrix in M   by the matrix 
(3). We have

1, 2 1, 1

2, 2 2, 1

3, 2 3, 1

2, 1

1, 1

,1 ,2 .3 , 3 , 2 , 1 , , 1

1 0 ... 0 0 0
0 1 ... 0 0 0
. . . ... . . . .
0 0 ... 1 0 0'
0 0 ... 0 0 1 0
0 0 ... 0 0 0 1

n n

n n

n n n n

n n

n n

n n n n n n n n n n n n n

a a
a a

a aM
a
a

a a a a a a a a

− +

− +

− − − +

− +

− +

− − − +

 
 
 
 
 

=  
 
 
 
 
 

.

Perform the operations 1 1 2 2 , 2 2 , 1, ,....., ,n n n n n n n n n n n na a a a a a a a a a a a− − −− − − −
        . 

We obtain

1, 2 1, 1

2, 2 2, 1

3, 2 3, 1

2, 1

1, 1

, 2 , 1

1 0 ... 0 0 0
0 1 ... 0 0 0
. . . ... . . . .
0 0 ... 1 0 0
0 0 ... 0 0 1 0
0 0 ... 0 0 0 1
0 0 0 0 0 0

n n

n n

n n n n

n n

n n

n n n n

a a
a a

a a
a
a

a a

− +

− +

− − − +

− +

− +

− +

 
 
 
 
 
 
 
 
 
 
 

.

At least one element among an, n2, an, n+1 is not zero in this matrix. 

If an, n2 then perform the operation , 2/n n na a −



 first, and the operations

1 1, 2 2 2, 2 3 3, 2, ,....,n n n n n n n na a a a a a a a a− − − − −− − −
     

 after the first operation. 
We obtain the following matrix

1, 1

2, 1

3, 1

2, 1

1, 1

, 1

1 0 ... 0 0 0 0
0 1 ... 0 0 0 0
. . . ... . . . .
0 0 ... 1 0 0 0
0 0 ... 0 0 1 0
0 0 ... 0 0 0 1
0 0 ... 0 1 0 0

n

n

n n

n n

n n

n n

a
a

a
a
a
a

+

+

− +

− +

− +

+

 
 
 
 
 
 
 
 
 
 
 

.

The last matrix is row equivalent to the matrix (1) as it’s needed. 
If an, n−2= 0 then an, n+1≠0. Perform the operation , 1/n n na a +



 first, and 
the operations 1 1, 1 1 1, 1, .....,n n n n n na a a a a a+ − − +− −

   

 after the first one. We 
obtain the following matrix

1, 2

2, 2

3, 2

1 0 ... 0 0 0 0
0 1 ... 0 0 0 0
. . . ... . . . .
0 0 ... 1 0 0 0
0 0 ... 0 0 1 0 0
0 0 ... 0 0 0 1 0
0 0 ... 0 0 0 0 1

n

n

n n

a
a

a

−

−

− −

 
 
 
 
 
 
 
 
 
 
 

.  

We have the matrix that is equivalent to the matrix of the type (4) 
as it’s needed.

Step (n−1). Substitute the left upper (n−1) ×n submatrix in M′  by 
the matrix (n−1). We have
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12 1, 1

2, 1

3, 1

2, 1

1, 1

,1 ,2 ,3 ,4 , 1 , , 1

1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
. . . . ... . . .'
0 0 0 0 ... 1 0
0 0 0 0 ... 0 1

...

n

n

n

n n

n n

n n n n n n n n n n

a a
a
a

M
a
a

a a a a a a a

+

+

+

− +

− +

− +

 
 
 
 
 

=  
 
 
 
 
 

.

Perform the operations ,1 1 ,3 2 , 1 2 , 1, ,....., ,n n n n n n n n n n n na a a a a a a a a a a a− − −− − − −
      

. 
We obtain

12 1, 1

2, 1

3, 1

2, 1

1, 1

,2 , 1

1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
. . . . ... . . .
0 0 0 0 ... 1 0
0 0 0 0 ... 0 1
0 0 0 ... 0 0

n

n

n

n n

n n

n n n

a a
a
a

a
a

a a

+

+

+

− +

− +

+

 
 
 
 
 
 
 
 
 
 
 

. 

At least one element among an, 2, an, n+1 is not zero in this matrix.
If an, 2≠0 then perform the operation ,2/n na a



 first, and the operation
1 12 na a a−
 

  after the first operation. We obtain the following matrix

1, 1

2, 1

3, 1

2, 1

1, 1

, 1

1 0 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
. . . . ... . . .
0 0 0 0 ... 1 0
0 0 0 0 ... 0 1
0 1 0 0 ... 0 0

n

n

n

n n

n n

n n

a
a
a

a
a
a

+

+

+

− +

− +

+

 
 
 
 
 
 
 
 
 
 
 

. 

If interchange rows in the last matrix, we obtain the matrix (1) as
it’s needed. If an, 2=0 then an, n+1≠0. Perform the operation , 1/n n na a +



first, and the operations 1 1, 1 1 1, 1,....,n n n n n na a a a a a+ − − +− −
   

 after the first 
one. We obtain the following matrix

121 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
0 0 0 1 ... 0 0 0
. . . . ... . . .
0 0 0 0 ... 1 0 0
0 0 0 0 ... 0 1 0
0 0 0 0 ... 0 0 1

a 
 
 
 
 
 
 
 
 
 
 

.

It is the matrix of the type (n-1) as we need.

Step n

Substitute the left upper (n−1) ×n submatrix in M  by the matrix 
(n). We have

1, 1

2, 1

3, 1

2, 1

1, 1

,1 ,2 ,3 ,4 , 1 , , 1

0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
. . . . ... . . .'
0 0 0 0 ... 1 0
0 0 0 0 ... 0 1

...

n

n

n

n n

n n

n n n n n n n n n n

a
a
a

M
a
a

a a a a a a a

+

+

+

− +

− +

− +

 
 
 
 
 

=  
 
 
 
 
 

.

Perform the operations ,2 1 ,3 2 , 1 2 , 1, ,...., ,n n n n n n n n n n n na a a a a a a a a a a a− − −− − − −
       

We obtain

1, 1

2, 1

3, 1

2, 1

1, 1

,1 , 1

0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
. . . . ... . . .
0 0 0 0 ... 1 0
0 0 0 0 ... 0 1

0 0 0 ... 0 0

n

n

n

n n

n n

n n n

a
a
a

a
a

a a

+

+

+

− +

− +

+

 
 
 
 
 
 
 
 
 
 
 

.        

At least one element among an, 1, an, n+1 is not zero in this matrix.

If an, 1≠0 then perform the operation ,1/n na a


 and interchange the 
rows. We obtain the matrix of the type (1) as it’s needed. If an, 1=0
then an, n+10. Perform the operation , 1/n n na a +



 first, and the operations, 

1 1, 1 1 1, 1,....,n n n n n na a a a a a+ − − +− −
   

 after the first one. We obviously obtain 
the matrix of the type (n) as it’s needed. The proof is done.

Theorem 1 can be transformed into the next statement that 
describes canonical bases for (n−1) −dimensional subspaces of n−
dimensional vector space.

Theorem 2

All nonequivalent canonical bases for (n−1) −dimensional 
subspaces of n−dimensional vector space (if (n≥2)) are

(1)    1 1 1 2 2 2 3 3 3 1 1 1,, , ,....., ;n n n n n n n n n n na e a e a e a e a e a e a e a e− − −= + = + = + = +
           

(2)    1 1 1, 1 1 2 2 2, 1 1 2 2 2, 1 1 1, ,...., , ;n n n n n n n n n n na e a e a e a e a e a e a e− − − − − − − − − −= + = + = + =
          

(3)    1 1 1, 2 2 2 2 2, 2 2 3 3 3, 2 2 2 1 1, ,...., , , ;n n n n n n n n n n n n na e a e a e a e a e a e a e a e− − − − − − − − − − − −= + = + = + = =
            

.      .     .     .     .     .     .     .     .     .      .      .     .     .      .      .      .     .      .  
(n-1) 1 1 12 2 2 3 3 4 3 2 2 1 1, , ,....., , , ;n n n n n na e a e a e a e a e a e a e− − − − −= + = = = = =

            

(n)    
1 2 2 3 3 4 3 2 2 1 1, , ,...., , , .n n n n n na e a e a e a e a e a e− − − − −= = = = = =
           

The statement is true for n≥3 because of Theorem 1. The additional 
case n = 2 is included in Theorem 2 because of Example 1.

Final Remark
The canonical bases introduced in the article are a powerful 

instrument that can be utilized in all applications of Linear Algebra. 
For example, all maximal subalgebras of any Lie algebra can be found 
using canonical bases listed in Theorem 2. 
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