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comprehensive and predictive. Most recent GSMM of E. coli, iJO1366, 
comprises of 1366 genes, 2251 metabolic reactions, and 1136 unique 
metabolites [5,6]. Methods have been developed to analyze these 
models in order to identify gene targets for metabolite overproduction. 
Additionally it is also possible to predict the cellular response to gene 
knock outs.

We identified the gene targets for overproduction of ethanol by 
E. coli on glucose and xylose as the carbon sources (C-sources). These
two sugars are the primary sugars in the lignocellulosic hydrolysates.
Genetic Design through Local Search (GDLS) method was employed to 
identify the targets that can significantly improve ethanol production
while having less effect on cell growth. GDLS conducts local search
of the solution space in order to efficiently find an optimum, though
the optimum need not be a global minimum or maximum of the
system. We also identified the predicted intracellular fluxes after
these knockouts using a method called Relative Change (RELATCH).
RELATCH employs 13C metabolic flux analysis (MFA) data from
the wild-type strain in order to constrain the flux distribution in the
knock-out strain. A new method, “hybrid-MOMA” is introduced to
predict flux distribution in the mutants for the cases where RELATCH
gives infeasible solution. Last, but not the least, we also evaluated the

Keywords: Gene targets; Metabolite overproduction; Genome scale
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Introduction
Lignocellulosic biofuels provide a promising alternative to fossil-

fuels currently used. This has led to intense research in this area in order 
to identify the best conditions for the different unit operations to make 
the product economically viable. Hydrolysis of lignocellulosic biomass 
releases a mixture of hexose and pentose sugars (primarily glucose and 
xylose), with pentoses accounting for 20% to 25% of the total sugars 
[1-3].There fore, a major requirement for biofuel production is that the 
process organism must be able to utilize both C5 and C6 sugars. Yeast 
(S. cerevisiae) normally used for ethanol production using molasses 
cannot ferment C5 sugars; attempts have been made to engineer S. 
cerevisiae to utilize xylose. Alternatives to S. cerevisiae which naturally 
ferment both C5 and C6 sugars, e.g., E. coli and S. stiptis are being 
explored. However, most organisms, including E. coli, conduct 
“mixed acid fermentation”, i.e., they produce acetic acid and lactic 
acid in addition to ethanol in order to maintain the redox balance. To 
overproduce ethanol, competing pathways are typically deleted. While 
such rational metabolic engineering approaches have helped produce 
many compounds, it is not possible to predict the effects of such 
deletions on growth.

Systems biology approaches can help predict cellular responses 
under different environmental conditions [4], e.g., on different C 
sources and the effect of deleting metabolic genes. One of the most 
popular methods of metabolic systems biology is constraints-based 
analysis of genome scale metabolic models (GSMMs). This is based 
on Flux Balance Analysis (FBA) approach, which assumes an internal 
pseudo steady state of metabolites within the cells. FBA approach 
requires information only about the reaction stoichiometries. It does 
not take into account the kinetic parameters of enzymes catalyzing 
them which are often unknown. Thus it is possible to solve the resultant 
linear system of equations for a much larger scale of model. GSMMs of 
E. coli have undergone many rounds of iterations to make them more
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mixed-acid fermentation. Identification of knock-out gene targets that maximize ethanol formation with minimum 
impact on cell growth can help optimize the fermentation. Constraints-based analysis of genome scale metabolic 
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effect of glucose phosphorylation reaction on the identified targets and 
show that the targets identified using GDLS depend on specifying the 
correct phosphorylation reaction.

Materials and Methods
Materials

The analyses were conducted on a Dell Precision T7600 Tower 
Workstation with eight cores and 8 GB RAM. These analyses utilized 
the Constraints-based Reconstruction and Analysis (COBRA) toolbox 
(version 2.0.5) [7] on MATLAB (2013b) platform. Gurobi 5.6.2 was 
used as the optimization problem solver. The analyses employed the 
iJO1366 metabolic model of E. coli. The built-in programs for GDLS 
and RELATCH analyses within the COBRA toolbox were utilized.

Methods

GDLS parameters: GDLS parameters were kept as follows: k, 
6; M, 2; maximum number of knockouts, 3 and the minimum flux 
through biomass reaction was kept to be half of the maximum biomass 
yield predicted in anaerobic conditions at respective carbon uptake 
rates. The target reaction search was limited to following metabolic 
pathways: alternate carbon metabolism, citric acid cycle, glycolysis/
gluconeogenesis, glyoxylate metabolism; pentose phosphate pathway 
and pyruvate metabolism. The ATP maintenance flux was fixed to 8.39 
mmol/(gDW·hr).

Testing the effect of glucose intake rates on identified targets: 
GDLS was run to identify targets for ethanol formation at glucose 
uptake rates of 10 mmol/gDW/h and 15 mmol/gDW/h. The former 
flux value is commonly employed in the literature to conduct in silico 
constraints-based analyses [5,7,8].The latter flux value was chosen 
based on glucose intake flux reported for anaerobic condition [9].The 
xylose intake rate of 10 mmol/gDW/h was chosen for the analyses.

Testing the effect of glucose transport system: In order to test the 
effect of glucose transport system on target identification, the reactions 
corresponding to other transport systems (Glucose isomerase and/or 
hexokinase) were removed from the GSMM prior to running GDLS 
simulations.

Predicting intracellular flux distributions using RELATCH 
and “hybrid-MOMA”: For the glucose simulations, possible flux 
distribution in the knockout model was calculated with respect to the 
previously published 13C-MFA based flux distribution in wild type 
(WT) model under anaerobic conditions [9], using RELATCH method 
[10]. The values of alpha and gamma were one and infinity respectively. 
These parameter values were chosen to predict the distribution in an 
“evolved” mutant.

For performing hybrid MOMA, the wild type flux distribution was 
obtained through RELATCH. The bounds of the reactions for which 
the 13C-MFA data was available were fixed to values calculated by 
RELATCH ± error in 13C-MFA data.

Results
GDLS-identified gene targets and their impact on ethanol 
formation and growth

The reactions pyruvate formate lyase (PFL) and 
phosphoglucoisomerase (PGI) were identified as knockout targets 
for ethanol production by GDLS in separate simulations with glucose 
and xylose as carbon source (Table 1). Indeed, in the KO mutants, 
the GDLS- predicted maximum flux of ethanol formation was >90% 

of the theoretical maximum for both glucose and xylose as the C 
source. However, the minimum flux through ethanol formation was 
0, suggesting that it may be possible that the mutant does not produce 
ethanol.

Flux distribution in WT and the knockout suggested by GDLS was 
calculated using RELATCH method. However, lactate was predicted as 
a major byproduct in this KO. This was in conjunction with previous 
report that knocking out pyruvate formate lyase (pfl) gene increased 
lactate production in E. coli [11]. For further simulations, we tested 
the effect of lactate dehydrogenase (LDH) reaction KO by constraining 
zero flux through the reaction. Indeed, ethanol secretion was higher 
in PFL, PGI and LDH knockout model. PFL and LDH reactions have 
been used as metabolic engineering targets previously in E. coli and 
other organisms [11-14]. In order to evaluate the role of PGI as a KO 
target, the flux distribution in PFL and LDH mutant was calculated. 
Pyruvate was predicted to be a major product with no flux through 
ethanol secretion.

GDLS simulations up to maximum of ten reaction targets were also 
performed. However, the increase in target metabolite production was 
marginal for reaction targets greater than three (not shown).

RELATCH analysis of flux distribution in the GDLS-predicted 
knock-out mutants

In order to understand the mechanism of improved ethanol 
formation in the GDLS-predicted KO, the intracellular flux distribution 
in the PFL, PGI and LDH reaction knockout strain was predicted using 
the RELATCH method [10]. The predicted flux distributions of WT 
and knockout models are shown in Figure 1a and 1b, respectively.

A major determinant of ethanol formation is the redox state of the 
cell. In the WT cells, the excess NADH is utilized to reduce Acetyl-
CoA to ethanol. The metabolism of pyruvate to acetyl-CoA through 
PFL in anaerobic conditions generates formate as a product. In the KO 
mutant, glucose metabolism was primarily through the xylose (glucose) 
isomerase instead of the EMP pathway. Additionally, it was observed 
that in the “evolved” mutant, the predicted flux from pyruvate to acetyl-
CoA was through Pyruvate Dehydrogenase (PDH) system. This flux 
through PDH generated additional NADH than in the WT strain. It 
must be noted that PDH is inactive under anaerobic conditions in WT 
E. coli due to repression of its genes under anaerobic conditions. The 
predicted flux in the KO mutant suggests that the flux from pyruvate 
to Acetyl-CoA must go through PDH to improve ethanol formation. 
This would require PDH to be expressed under promoters that are 
active in anaerobic conditions. Munjal et al. [15] had used the same 

Glucose Xylose

Minimum ethanol production 0.00 0.00

Maximum ethanol production 18.49 15.71

Maximum Predicted yield (% of 
theoretical maximum) 92.45 94.08

biomass 0.10 0.07

Targets
Pyruvate formate lyase Pyruvate formate 

lyase

G6P isomerase G6P isomerase

Table 1: Results of GDLS simulations. Uptake rates for both glucose and xylose 
were chosen as 10 mmol/gDW/h. Product secretion rates are in mmol/gDW·hr. 
Ethanol yield is shown in percentage of maximum yield.
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strategy to improve ethanol formation from glucose and xylose. They 
had expressed PDH genes under different constitutive promoters so 
that this reaction is active under anaerobic conditions.

The effect of glucose intake rates and phosphorylation 
reaction on ethanol targets identified by GDLS

RELATCH predicted a significant flux through the xylose (glucose) 
isomerase (XI) reaction to generate fructose from glucose in both WT 
and KO (Figure 1a and 1b). The fructose was then phosphorylated 
by the fructokinase to F6P. While in the WT strain, the glucose 
phosphorylation occurred through all the three reactions (XI, 
hexokinase and PTS) to almost equal extent, in the KO mutant XI was 
predicted to be the primary phosphorylation reaction. However, it is 
well known that in E. coli, PTS is the primary glucose transport system 
and there are no reports on significant flux through the XI reaction. 
Therefore, we investigated whether the glucose phosphorylation 
reaction affects the KO targets predicted by GDLS. For this analysis, 
all the glucose intake flux was restricted through (PTS + hexokinase) 
or PTS only (Table 2). The targets identified by the GDLS for the 

conditions where the flux through XI was not allowed were different 
than those when the flux through XI was allowed (compare targets 
in Table 1 vs. Table 2), though PFL was identified as the target in all 
the cases. The minimum ethanol production predicted by GDLS was 
still zero, though the maximum was greater than ninety percent of the 
theoretical maximum. It must be mentioned that the targets identified 
for xylose as C-source did not change with changing the glucose 
phosphorylation reaction.

Increasing the glucose uptake rates from a traditional value of 10 
mmol/gDW·hr to near-13C-MFA value of 15 mmol/gDW·hr did not 
affect the targets identified. Lactate was again predicted to be a major 
byproduct by RELATCH. Hence we included LDH as a target for 
further analysis. However, RELATCH was unable to identify the flux 
distribution in these KOs. Therefore, we derived the flux distribution 
in these mutants by hybrid-MOMA (see methods) which predicted 
a succinate as a major byproduct in the KOs. E. coli AFP111 and E. 
coli NZN111, which lacks PFL and LDH genes, have been reported 
to produce higher amount of succinate under anaerobic condition 
[16]. Deleting fumarate reductase (FRD) reactions prevented the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   (a)                                                            (b) 
Figure 1: Simulated flux distribution in WT (a) and KO (b) model using RELATCH.
BiomassWT = 0.23, BiomassKO = 0.19.
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high flux towards succinate (Table 3). In silico prediction of flux 
through product is biased by method of calculating flux distributions. 
However, minimizing the product flux may give an idea about how 
much minimum flux can be expected from the KO strain. We found 
that the minimum flux towards ethanol is similar irrespective of FRD 
being included as target. When only PFL, LDH, and FRD were used 
as KO targets, the minimum ethanol flux was lower than when PFK, 
SGL, PFL and LDH were used as KO targets. While the addition of 
FRD as the target did not impact the minimum ethanol formation 
predicted by FBA, the ethanol formation predicted by hybrid-MOMA 
was significantly increased. Flux distribution predictions by hybrid 
MOMA for the WT and in PFK, SGL, PFL, LDH and FRD knockout 
mutant is shown in Figure 2 a and b. The deletion of PFK significantly 
increased the flux through pentose phosphate pathway and the deletion 
of SGL prevented the loss of C to E4P. Also, in the mutant, there was 
increased flux through PTS system and DHAP-phosphotransferase 
which led to increased pyruvate synthesis. The synthesis of acetyl-CoA 
from pyruvate in the mutant was increased by distributing the flux 
through PDH and pyruvate synthase. The increased acetyl-CoA led to 
increased ethanol formation.

Discussion
Constraints-based analyses of GSMM are very useful to predict 

cellular behavior under different environmental and genetic conditions. 
Associated methods have been developed that can identify KO and 
overexpression candidates to overproduce a desired metabolite. An 
important factor investigated in this study was the effect of glucose 
transport system on the targets identified. The PTS system has been 
reported to be the primary transport and phosphorylation systems for 

E. coli. Glucose intake and phosphorylation through PTS consumes 
PEP during the import which is regenerated during the glycolytic 
metabolism. The ABC transporter requires ATP which is generated 
through a variety of substrate-level phosphorylation under anaerobic 
conditions. The observation that different phosphorylation reactions 
lead to different targets raises the point that in order to make meaningful 
predictions, the correct phosphorylation reaction must be known. 
While such an information is known for many of the well-characterized 
organisms, for the newly-sequenced and less characterized organisms, 
it is not sufficient to just know all the transport systems, but to know 
which is the primary pathway through which glucose or the primary 
C-source is phosphorylated.

Typically, most simulations in literature have used 10 mmol/
gDW/h glucose intake rates. This value is closer to glucose intake 
rates in aerobic conditions [9]. However, it has been reported that 
glucose intake flux is higher under anaerobic conditions, perhaps to 
compensate for reduced ATP generation per mol of glucose under 
anaerobic conditions. Here we investigated the effect of glucose intake 
rate on targets identified by GDLS. Our results show that beyond 10 
mmol/gDW/h, glucose intake rate did not affect the targets identified.

GDLS also provides the minimum and maximum flux through the 
product. Both these values are useful when deciding the KO targets. 
However, these extreme values, while providing a useful range, 
may over- or under- predict the actual product formation rates. For 
example, GDLS predicted >90% flux through ethanol formation with 
just PFL and PGI KOs, even though it is known that such a mutant 
will produce lactate and pyruvate as products. RELATCH, which 
utilizes 13C-MFA data for the WT cells may provide more realistic 

Carbon Uptake Mode Only PTS PTS and Hexokinase

Targets
PFK PFK PFK FBA

S7PK SGL S7PK SGL
PFL PFL PFL PFL

Minimum ethanol production 0.00 0.00 0.00 0.00
Maximum ethanol production 18.23 18.23 18.12 18.12

Biomass 0.12 0.12 0.13 0.13

Table 2: GDLS solution when glucose uptake rates are restricted through only PTS system or PTS and hexokinase. Uptake rates for both glucose and xylose were chosen 
as10 mmol/gDW/h. Product secretion rates are in mmol/gDW·hr. Ethanol yield is shown in percentage of maximum yield.

Abbreviations: PFK: Phosphofructokinase; S7PK: Sedoheptulose 7-Phosphate Kinase; SGL: Sedoheptulose1,7-Bisphosphate D-Glyceraldehyde-3-Phosphate-Lyase; 
FBA: Fructose-Bisphosphate Aldolase; PFL: Pyruvate Formate Lyase.

WT PFK, SGL, PFL PFK, SGL, PFL, LDH PFK, SGL, PFL, 
LDH, FRD PFL, LDH, FRD

Biomass 0.28 0.16 0.16 0.16 0.16

Glucose uptake rate 16.52 15.00 15.00 15.00 15.00

Ethanol 12.38 8.47 14.63 17.47 15.89

Lactate 1.31 9.23 0.00 0.00 0.00

Formate 22.44 0.00 0.00 0.00 0.00

Acetate 10.30 5.25 5.52 5.30 4.55

Succinate 0.80 5.55 8.05 0.05 0.05

minimum ethanol ��* 0 0 13.42 13.56 12.82

* FBA prediction

Table 3: Hybrid MOMA-predicted fluxes through major products. All flux values except shown in mmol/gDW·hr. Biomass flux shown in hr-1. The minimum ethanol flux was 
calculated using FBA by minimizing the flux through this reaction and not through hybrid MOMA. 

Abbreviations: PFK: Phosphofructokinase; SGL: Sedoheptulose 1,7-Bisphosphate D-Glyceraldehyde-3-Phosphate-Lyase; FBA: Fructose-Bisphosphate Aldolase; PFL: 
Pyruvate Formate Lyase; FRD: Fumarate Reductase.
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product formation rates in mutants. The RELATCH-predicted ethanol 
formation flux in the best mutant is ~58% of the maximum. This value 
is very close to a yield of ~54% of the maximum reported for LDH-FRD 
mutant expressing PDH under GAPDH promoter growing on defined 
medium [15].

Some of the targets identified by us, e.g., PFL, LDH and FRD, 
are logical targets for ethanol production and have been reported 
previously to improve ethanol formation. A consistent observation 
in all the “evolved” KOs is the flux through PDH which increases 
the NADH yield and improves ethanol formation. This approach has 
been successfully employed in a previous study [15]. Our analyses 
suggest that addition of PFK and SGL may further improve the ethanol 
formation.

Therefore, our results show that, while FBA-based in silico methods 
are very useful to identify suitable targets with minimal experimental 
information input; additional information on cellular systems such 
as correct phosphorylation reaction is needed to identify meaningful 
targets. Also, utilizing the 13C-MFA data may provide more realistic 
predictions of performance of the mutants than those given by purely 
FBA-based methods.
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