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Abstract
Malaria is a ubiquitous disease that can affect more than 40% of the world’s population who live with some risk 

of contracting this disease. The World Health Organization (WHO) has recently highlighted the high spread of this 
disease in Sub-Saharan Africa. Despite the considerable fall in mortality rate over the past decade, the development 
of resistance against main treatment strategies still exists. This problem has provoked scientific efforts to develop 
various treatment strategies including use of vaccines, drug delivery systems, and biotherapeutics approaches.

A vaccination strategy is being implemented to trigger direct clearance of the causative parasites from the 
human host. However, the complex life-cycle of Plasmodium parasites with continuous antigenic mutations has 
partly hindered this approach so far. The application of different types of drug delivery systems for the delivery of anti-
malarial drugs is also being considered in order to improve the efficacy, pharmacokinetics, tolerability, and reduce 
toxicity of existing anti-malarial drugs. A third approach has emerged from the high success of antibodies to treat 
complex diseases like cancer and autoimmune diseases. Various antibody engineering methods and formats have 
been proposed to tackle the notable sophisticated lifecycle of malaria.

Within the malaria research field, the characteristics of these diverse treatment strategies, individually, are 
broadly acknowledged. This review article considers the current status of these approaches and the future outlook.
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Introduction
Malaria is an infectious disease that is caused by the parasite 

Plasmodium. This transmittable disease affects around 200 million 
annually, killing about 650,000 people per year, especially children less 
than 5 years old living in sub-Saharan Africa [1]. The WHO 2015 Fact 
Sheet reported that over 15 years from 2000-2015, there was a global 
reduction in malaria incidence ratesand mortality by 37% and 60%, 
respectively. However, the subsequent Fact Sheet in 2016 confirmed 
the emergence of parasite resistance to antimalarial medicines and 
mosquito resistance to insecticides, which could trigger a rise in global 
malaria mortality if ignored.

The five main parasite species in this respect are P. vivax, P. 
knowlesi, P. ovale, P. malariae, and P. falciparum; the latter represents 
the most lethal [2]. The parasite life cycle in humans typically begins 
by injection of sporozoites via the skin, which can then migrate to 
hepatocytes in less than one hour [3], where they replicate and generate 
merozoites. These merozoites complete the journey to erythrocyts of 
the patient (clinical stage), and then differentiate into gametocytes that 
eventually reach the parasite holder (the mosquito) through infected 
human blood [4].

Various reports have indicated the growth in malaria mortality rate, 
due to emergence and spread of multidrug-resistant P. falciparum against 
established antimalarial compounds [5,6]. Moreover, therapeutic failure 
of some anti-malarial medications has been attributed to their toxic side 
effects as well as their inconvenient dosing schedules. Therefore, there 
is an urgent requirement to identify new treatment strategies against 
malaria [7]. These approaches have been directed towards enhancing 
the characterisation of natural products, adaptation of effective vaccine 
and drug delivery strategies, and the development of specific bio-
therapeutic agents [8-13]. The main objective of this article is to review 

the anti-malarial role of bio- therapeutic formulations, and to evaluate 
their potential as effective treatments to malaria in the future.

Literature Review
Vaccines and immune-conjugates

Significant efforts have been dedicated over the past decades to 
develop vaccines that can protect humans against malaria parasites. 
Vaccine development has been directed to different infection stages 
including transmission blocking vaccines, pre-erythrocytic vaccines, 
and blood-stage vaccines; these have been reviewed comprehensively 
for both P. falciparum and P. Vivax [14-16]. Generally, vaccines have 
either been subunits of well-defined and conserved parasite antigens, or 
whole attenuated sporozoites. The most advanced malaria vaccine (RTS, 
S: Mosquitix TM) is currently in Phase III clinical trial, and contains the 
conserved central repeat and C-terminal regions of the P. falciparum 
circumsporozoite protein (CSP) that is expressed on sporozoites in early 
liver stages [17,18]. Despite this advancement, vaccine development 
against malaria has been dishearteningly hindered by the complex life 
cycle of the parasites, which results in several morphological changes 
and displays antigenic variations.
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Immuno-conjugation refers to the use of a delivery system to 
deliver a conjugated drug to facilitate its delivery into a target tissue. 
An example of this strategy is the delivery of Angiopep-2 conjugated 
paclitaxel through the use of the low-density lipoprotein receptor 
related protein (LRP) as a carrier. This contrasts with the concept of 
drug delivery systems that can be used with either conjugated or 
unconjugated drugs [19]. Immuno-conjugation strategies can be used 
as "Trojan-horses" for specific delivery of antimalarial drugs, to reduce 
the emergence of resistant strains, and curtail the adverse drug reactions 
and toxicity of these medicines. This approach is broadly implemented 
in various medical applications, especially to target cancer cells [19-22]. 
Generally, anti-malarial conjugates can be ferried to the infected host 
cells by parenteral routes through either passive or active targeting [23]. 
Passive targeting has been accomplished by conventional nano-carriers 
such as micelles, liposomes and polymerosomes [24-27]. Whilst, active 
targeting can be achieved by functionalisation of the nano-carriers with 
specific biomolecules such as antibodies, proteins, or peptides [23].

Considering the peculiarities of erythrocytes, liposomal 
nanocarriers are premeditated as a promising approach for the targeted 
delivery of antimalarial drugs [28]. For instance, artemether and 
lumefantrine were co-loaded into nanostructured lipid carriers, and 
their antiplasmodial effect was evaluated [29]. Similarly, curcuminoid-
loaded liposomes in combination with arteether has prevented the 
recrudescence of malaria in mice [30]. An advancement to liposomal 
research was actualised through the introduction of nanomimics 
based on polymersomes for blocking invasion, and causing augmented 
exposure of the infective form of P. falciparum to the immune system 
[31]. Moreover, advanced drug delivery systems based on conjugation 
of, for example, artesunate to nanoerythrosomes have shown controlled 
delivery to evade drug leakage, improve stability, and reduce cost 
and toxicity [32]. Passive targeting could also be achieved by surface 
modification of the nano-carrier with poly (ethyleneglycol) (PEG) to 
delay phagocytosis, thus prolonging the plasma half-life of the drug, 
resulting in alteration in the pharmacokinetic profile of the drug [33]. 
Another conceptualisation has involved the iron uptake systems of 
microorganisms to deliver siderophore-drug complexes, which are 
recognised by specific siderophore receptors, and is thereupon actively 
transported across the outer bacterial membrane [34], and could be 
useful against malaria [35]. Conjugation of desferrioxamine B to methyl 
anthranilic acid or nalidixic acid have, for instance, evinced significant 
effects against multidrug resistant P. falciparum [36].

The essential role of cysteine proteases in the malaria parasite is 

widely appreciated, and both small inhibitors, like leupeptin and vinyl 
sulphones, and macromolecular inhibitors, such as falstatin expressed 
in P. falciparum, were analysed [37,38]. These promising macromolecule 
inhibitors are mostly competitive, and utilise loop-like structures to 
interact with malarial cysteine proteases [39]. A recent example has 
implemented computational approaches to better understand falcipains 
structure and ligand binding [40]. It is also essential when new drugs are 
established to concurrently study resistance processes in order to avoid 
a seemingly inevitable outcome [41]. The new approach of targeting 
"hot-spot" protein-protein interactions of macromolecular inhibitor-
enzyme complexes is less liable to drug resistance point mutation, and 
represents a promising field in drug development. These hot spots can 
also include potential targetable steps in the protein export pathway 
that are essential for parasite survival [42]. Drug repurposing is another 
possibility to find approved drugs that could have efficacy against 
malaria parasites. A recent example is illustrated by the development 
of the protein farnesyltransferase inhibitors (PFTIs), that block the 
transfer of a farnesyl group as a posttranslational modification onto 
specific proteins [43]. A panel of PFTIs was tested to inhibit in vitro 
growth of P. falciparum parasites, and a series of tetrahydroquinoline 
(THQ) PFTIs was identified with excellent potency [44].

Delivery systems for anti-malarial drugs

Since the initial conceptualisation of the "magic bullet" principle 
by Paul Ehrlich, which was based on specifically destroying foreign 
microbes without harming the human body itself, the drug delivery 
field has evolved noticeably. Drug delivery is based on using a delivery 
carrier to carry and release a therapeutic agent to a particular site in the 
body at a specific rate [45]. Different types of drug delivery systems can 
be used for this purpose including liposomes, niosomes, lipid nano-
emulsions, poly (lactideco-glycolide) (PLGA), and natural polymers 
such as collagen and chitosan [46-48]. The most commonly used 
delivery systems for the delivery of anti-malarial agents are summarised 
in Table 1.

Liposomes are the most extensively studied system for the delivery 
of different therapeutic agents. As lipid based nanoparticles, they are 
formed by the self-assembly of their lipid components into bilayer 
structures encapsulating an aqueous moiety. This results in a versatile 
structure in which hydrophilic drugs can be encapsulated in the inner 
aqueous core while hydrophobic agents will be embedded in the lipid 
bilayer structure [49]. Several research groups have investigated the 
use of liposomal formulations for the delivery of different antimalarial 

Anti-malarial drugs Delivery system used Purpose Reference
Artesunate Liposomes Improve patient compliance for multiple administations [50]
Chloroquine Chitosan–tripolyphosphate nanoparticles Treatment of chloroquine resistant malaria parasites [11]
Chloroquine Dendrimers Reduce chloroquine toxicity [53]
Primaquine Liposomes Reduce primaquine toxicity [56]
Primaquine Chylomicron emulsion Target primaquine to hepatocytes [10]

Primaquine Polyisohexylcyanoacrylate
(PIHCA) nanoparticles Reduce primaquine toxicity [57]

Primaquine Oral lipid nanoemulsion Improved primaquine oral bioavailability and liver targeting [58]
Chloroquine PEGylated poly-L -lysine-based dendrimers To induce controlled and sustained delivery [142]
Chloroquine PEGylated neutral and cationic liposomes Treatment of chloroquine resistant malaria parasites [143]

Chloroquine Amidated pectin hydrogel beads Delay the release of oral chloroquine to distal parts of the 
gastrointestinal tract [144]

Chloroquine and Primaquine Dendritic derivatives Reduce the toxicity of the used anti-malarial drugs [145]

Chloroquine Poly (amidoamines) drug conjugates Selectively deliver chloroquine to Plasmodium-infected red 
blood cells [146]

Monensin Liposomes Improving the anti-malarial activity of monensin [147]

Table 1: Outline of the anti-malarial drug delivery systems.
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agents in order to improve their pharmacokinetics or therapeutic 
index. Gabriels et al. developed a formulation that can improve 
patient compliance towards artesunate, which is an anti-malarial agent 
that requires frequent administration due to its rapid elimination, 
through the use of liposomes [50]. They developed a slow release 
preparation by encapsulating artesunate into liposomes containing egg 
phosphatidylcholine/cholesterol in a molar ratio of 4:3 [50].

Chloroquine (CQ) is an effective anti-malarial drug against all five 
species of parasites. The activity of CQ is thought to take place in the 
parasite's acidic digestive vacuole (DV) against the intraerythrocytic 
stage of the human malaria parasite [51]. However, inside the acidic 
DV, CQ becomes protonated and less membrane-permeable leading 
to its accumulation in the DV with subsequent efflux out of the DV, 
away from its primary site of accumulation and action, and reduction 
in the anti-malarial activity of CQ [52]. In order to reduce the efflux 
of CQ from DV, chitosan-tripolyphosphate (CS-TPP) nanoparticles 
(NPs) were conjugated to CQ and examined in Swiss mice infected 
with attenuated of P. berghei [11]. These NPs were demonstrated to 
act as an effective formulation, eliminating parasites, while protecting 
lymphocytes, serum and red blood cells against P. berghei infection 
at a dose of 250 mg/kg body weight for 15 days treatment. Another 
approach was adopted using galactose coated polyl- lysine dendrimers 
loaded with CQ, and haemolytic toxicity was drastically reduced by at 
least 50% through a sustained drug release behaviour compared to free 
CQ both in vitro and in vivo [53].

Primaquine (PQ) is another anti-malarial drug which exerts a 
broad-spectrum activity against various stages of parasitic malaria. 
PQ targets latent liver stage of malaria infection caused by different 
plasmodia such as P. vivax and P. ovale [54]. Moreover, PQ is also 
prescribed for terminal prophylaxis to prevent infection by P. 
falciparum and P. vivax. However, PQ can cause severe tissue toxicity 
including haematological and gastrointestinal related side effects [55]. 
PQ targeting of the liver, would possibly help to reduce therapeutic dose 
and subsequently its dose related toxic effects. Encapsulation of PQ in 
different delivery systems such as liposomes was initially designed, and 
shown to significantly increase the LD50 and LD90 in mice, as a result 
of changing the distribution pattern of PQ after encapsulation [56]. In 
an attempt to target PQ to hepatocytes, Dierling et al. encapsulated PQ 
into chylomicron emulsion, with an average particle size of 180 nm, 
which led to significantly enhanced accumulation of PQ in the liver 
compared to free PQ [10]. Whilst the in vitro anti-leishmanial activity 
of PQ-loaded polyisohexylcyanoacrylate (PIHCA) NPs showed a 21-
fold increase in ED50 compared with free PQ [57]. Moreover, when 
PQ was incorporated into an oral lipid nanoemulsion, PQ exhibited 
improved oral bioavailability, and was taken up preferentially by the 
liver with a drug concentration 45% higher than the free PQ. This 
resulted in a 25% lower dose required to achieve effective antimalarial 
activity against a P. bergheii infection in Swiss albino mice compared to 
free oral doses of PQ [58]. Other systems investigated for PQ delivery 
include dendrimeric NPs [59], poly (lactide) NPs [60], and the use of 
gum arabic microspheres [61].

Anti-malarial antibodies

Alternatively, the active targeting of malaria parasites can be 
achieved using antibodies, which has high proven efficacy against cancer 
and several other autoimmune diseases [62-65]. The antimalarial drug 
CQ showed improved efficacy when delivered inside immunoliposomes 
targeted with the pRBC-specific monoclonal antibody BM1234 [28]. 
Likewise, CQ-loaded MAb F10-liposomes were able to clear not only 
CQ-susceptible, but also CQ-resistant parasites in mice [66]. Antibodies 

are glycoproteins belonging to the immunoglobulin (Ig) superfamily, 
and have been widely used in different biomedical applications. The 
antibody molecule is structurally composed of two heavy and two light 
polypeptide chains, linked together by disulphide bonds [67]. One light 
chain type (λ or κ) can be linked to one heavy chain (μ, δ, γ1- 4, α1-2, 
or ε) to create any of the nine antibody subclasses in humans (IgM, IgD, 
IgG1-4, IgA1-2, or IgE) [68-72]. Functionally, an antibody consists of 
three fragments: a fragment crystallisable region (Fc) that represents 
the stem of the "Y" shaped molecule, and two fragment antigen binding 
(Fab) regions (Figures 1A-1D). While the Fab fragments are responsible 
for antigen binding, the Fc fragment interacts with other elements of 
the immune system including Fcreceptors (FcRs), pattern recognition 
receptors (PRR), and components of the complement cascade, to 
promote removal of the antigen [73,74]. Within the Fab region, 
each of the variable heavy (VH) or light (VL) chains consist of three 
complementarities determining regions (CDRs), which are accountable 
for antigen recognition [75].

Antibodies are prominent immune modulators that bridge innate 
and acquired immunity, and therefore, can be effective against micro-
organisms, if they do not mediate a direct biological effect within the 
infection process [76]. This perception has sustained their candidacy 
to combat malaria by, for instance, curtailing the damage associated 
with any inappropriate host inflammatory responses [77]. The role of 
antibodies in malaria protection can also be attributed to inhibition 
of merozoite invasion of erythrocytes [78], antibody-mediated 
phagocytosis through FcR and complement pathways [79], and 
antibody-dependent cellular inhibition [80,81]. Both autoantibodies 
and antibody immune complexes can drive B-cell responses, through 
the PRR toll-like receptor-9, and support their potential in malaria 
[82]. Several years of repeated infections are, however, required to 
develop protective responses to malaria [83], in defiance of the critical 
importance of humoral immunity in the development of acquired 
immunity to malaria [84,85]. Variation of surface antigens and 
antigenic diversity facilitates the development of recurrent infections 
over the years, as new infections seem to exploit gaps in the repertoire 
of variant-specific antibodies [84,86]. P. falciparum expressed antigens 
on erythrocyte surfaces, for instance, appear to be highly polymorphic 
and undergo clonal antigenic diversity, and antibodies against these 
antigens typically inaugurate a high degree of strain specificity [87,88].

 

Figure 1: Antibody structure and alternative formats, The refined structures of 
A) IgG2a mAb (PDB ID: 1IGT), and B) scFv formats of the same antibody for 
illustration. The antibody domains were colour coded as follow; VL: red, VH: 
blue, CL: green, CH1: yellow, CH2: magentas/orange, CH3: cyan/grey and, and 
Linker: light grey. The IgG mAb is composed of two Fab and one FC regions. 
C) VNAR sdAb (PDB ID: 1VES), and D) VHH sdAb (PDB ID: 4GFT). The atoms 
of C) and D) were coloured as carbon: green; Oxygen: red; nitrogen: blue. 
Structures were viewed and coloured by PyMOL 1.3 (academic version).
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Different antibody formats can be accoutred to neutralise 
Plasmodium parasites, ranging from a full monoclonal antibody (mAb) 
to smaller fragments including Fab, a single chain antibody (scFv), or 
even a single domain antibody (sdAb) (Figures 1 and 2). Whole mAbs 
are time-honoured bio-therapeutic molecules, through their ability to 
maximise the benefits of activating the cellular response by Fc regions 
[119]. In the murine malaria model, the recruitment of effector cells 
by Fc is vital, as the passive transfer of specific antibodies to malarial 
MSP1 could not impede death in FcR-deficient and immunodeficient 
models [81,120]. However, the utilisation of mAbs in malaria might 
be inappropriate per se, especially if these antibodies interact with the 
incongruously inhibitory FcRs [115]. Moreover, high concentrations 
of antimalarial mAbs are requisite to compete for FcRs binding with 
infection induced low-affinity polyclonal antibodies [121]. These low-
affinity antibodies were developed against short highly repetitive amino 
acid sequences, cross-reactive with several malarial antigens, and might 
be generated from a process of immune evasion [122].

In order to develop a “magic bullet” that would specifically 
neutralise and eradicate invading microbes, like malaria parasites, 
various antibody engineering approaches and formats have been 
investigated. This includes bispecific antibodies (BsAbs) that were 
developed to recognise both P. yoelii MSP1 and human FcγR1 [9]. 
Another bispecific scFv combination, linked by a flexible peptide 
linker (Gly4-Ser)3, has been developed to target P. falciparum blood-
stage malaria parasites, by linking CD3 antigen of human T-cells and 
MSP1 [123]. Even a trispecific antibody has been developed in the 
malaria field, as previously involved in cancer treatment development, 
to link two potential targets of malaria (merozoite surface protein 1 

Previous studies have acknowledged the fact that upon exposure to 
a new malaria infection, parasite-specific antibody levels rise noticeably 
within 1-2 weeks [89,90]. The boosted antibodies then reduce quickly 
after the infection is controlled, and accordingly signify that protective 
memory for a specific antibody response is either not provoked or is 
being debilitated [91]. Passive transfer of IgG from immune African 
adults to African children was observed to be highly effective against 
malaria parasites [80,92]. Furthermore, transfer of serum from partially 
immune individuals to non-immune persons induces significant 
antimalarial activity [92,93]. This anti-malarial response was verified 
to be associated with malaria specific antibodies [94,95]. Nevertheless, 
serum therapy is notoriously correlated with high difficulty of finding a 
sufficient number of donors, possibility of transferring other infectious 
diseases, and the impracticality of dealing with human blood products. 
In addition, sera normally consist of polyclonal antibodies, which 
might contain numerous nonspecific antibodies [96,97]. Consequently, 
serum treatment is associated with several limitations, and adoption 
of a bespoke antibody engineering approach is essential to match the 
sophisticated life cycle of this parasite and the scale of this ubiquitous 
disease.

Amongst the four IgG subclasses, anti-malarial protective 
antibodies are restricted to a panel of IgG1 and IgG3 subclasses [81]. 
The IgG2 subclass can compete with IgG1 and IgG3, and interfere with 
their protection effectiveness [98], although others have suggested 
IgG2 antibodies participate in protection if individuals possess a rare 
mutated allele encoding an Fc gamma receptor-type IIA (FcγRIIA) 
that can bind IgG2, IgG3, and IgG1 subclasses [99]. On the other hand, 
IgG4 antibodies are considered as completely non-protective [98,100-
102]. Subsequently, the IgG3 subclass is epitomised as the prevailing 
isotype of antibody responses incarnated with protection against 
malaria [101-103]. The propagated antibodies were primarily of the 
IgG2a and IgG3 subclasses [104,105]. In addition, immunisation with 
an antigen preparation derived from P. falciparum merozoite surface 
protein (MSP)-1 has induced a shift to IgG2b [106], even though 
most protein antigens in a murine model are expected to induce 
IgG1 antibodies. Interestingly, mouse IgG2b is to a certain degree the 
equivalent of human IgG3 [107], and has a shorter half-life than other 
mouse IgG subclasses [108]. Consequently, a human vaccine aimed at 
eliciting antibody protection against blood-stage P. falciparum would 
preferentially generate IgG1 and/or IgG3 antibody responses against 
the selected candidate antigens, and downregulate a concomitant 
IgG4 and IgG2 antibody response. Therefore, an anti-malarial vaccine 
should ideally be administered in combination with an adjuvant that 
stimulates the production of cytokines, such as interleukin (IL)-10 and/
or transforming growth factor (TGF)-β [109,110], in target cells to 
switch Ig responses to IgG1 and IgG3.

Along with IgG class, other Ig classes were explored to envisage 
whether infection with Plasmodium parasites can be preferentially 
inhibited. The therapeutic inappropriateness of IgE antibodies to treat 
malaria was commonly suggested, due to their observed role in malaria 
pathogenesis [111,112]. Nevertheless, a reduced risk of subsequent 
malaria infection was also linked to the existence of high levels of 
parasite-specific IgE antibodies [113]. Pentameric IgM antibodies 
were additionally implemented as an adjuvant for malaria vaccine 
development, through their ability to stimulate the development of 
acquired T-cell immunity [114]. Whilst the ability to steer IgA antibodies 
to target FcαR have shown remarkable potential in eliminating serum 
pathogens [115]. Re-appraisal of the role of IgA in malarial infections is 
necessary, since Plasmodium-specific IgA antibodies were detected at 
high levels in human’s breast milk [116,117] and serum [118].

 

Figure 2: Binding site topography and CDRs orientation, CDRs orientation of 
Fab (PDB ID: 2J5L), VHH (PDB ID: 4GFT), and VNAR (PDB ID: 1VES) domains 
were examined as top (T) and side (S) views. The CDR regions were colour 
coded for CDR1: red, CDR2: green, CDR3: blue, HV2 (1VES VNAR): yellow, 
and HV4 (1VES VNAR): magenta, CDRL1 (2J5L): cyan, CDRL2 (2J5L): orange, 
CDRL3 (2J5L): violet. The PDB entries of these crystal structures are depicted 
at the lower corner of each picture. Structures were viewed by PyMOL 1.3 
(academic version).
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(MSP1) and malarial Apical Membrane Antigen-1 (AMA1)) with FCR 
[9,124]. An alternative antibody format, which has been extensively 
used in malarial research, is the binding “arm” Fab fragment. The 
comprehensive search for anti-malarial antibodies in the Protein Data 
Bank (PDB) has retrieved eleven mouse Fabs that were developed 
against different malaria targets (Table 2). The smallest binding 
domains, camelids (VHH) and shark (VNAR) sdAbs (Figures 1C and 
1D), can also be used to neutralise malaria parasites since they are 
highly acclaimed to bind cryptic epitopes [125-127]. These cryptic 
cavities and clefts are secluded to full mAbs due to steric hindrance, 
and therefore, can be conveniently accessed by smaller sdAbs (Figure 
2). The selection and affinity maturation of two shark VNARs (PDB 
ID: 1VES and 1VER) targeting P. falciparum AMA1 were developed 
for diagnostic applications [128], as summarised in Table 2. Unusually, 
CDR3 of the 1VES sdAb has displayed an extended-hairpin structure 
(Figure 2), which has indulged this sdAb with a distinct selective 
advantage in accessing cryptic epitopes [129]. To achieve a comparable 
objective, camel VHH sdAb (PDB ID: 4GFT) was generated to target 
MyoA-binding domain (D3) of P. falciparum myosin tail interaction 
protein (MTIP) [130]. This sdAb binds favourably to an area that is 
slightly overlapping with the MyoA binding groove, and impedes 
MyoA binding by MTIP. Antibodies have been thoroughly investigated 
in targeting specific malarial antigens and antimalarial drugs for both 
therapeutic [131-137] and diagnostic [138-148] purposes. Moreover, 
antibodies possess high potential to deliver anti-malarial drugs directly 
to parasites, thus reducing the risk of adverse drug reactions. However, 
the exploitation of antibodies with respect to this concept remains not 
fully explored, and requires further pursuance in the future.

Discussion 
Malaria is a highly infectious disease that has diminished the lives 

of millions around the globe. Treatment strategies to date are based on 
either natural/synthetic small molecules, or macromolecules such as 
vaccines and antibodies. Most treatment approaches have been hindered 
by the complex life-cycle of the parasite that has continuously caused 
the emergence of drug-resistant species. Despite this unprecedented 
difficulty, several promising drug delivery approaches, vaccines, and 
antibody formats have been developed to tackle this fatal disease. 
Future research should be directed to find new antimalarial candidates 
with either new mechanisms of action, resistance modifying actions or 
target novel metabolic pathways that are essential for parasite survival 
and applying new tools for designing these drugs. In addition, more 

novel combinations of small molecules or micro-macro complexes 
should be implemented as combination strategies or antibody-small 
molecule drug conjugates to synergise the treatment effect. 

Conclusion
In order to achieve this objective, additional funding is required 

to support the drug discovery process academically, and to attract 
pharmaceutical companies to invest within this highly pandemic, but 
not very commercially-attractive field.
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