
Open AccessISSN: 2157-7145

Research Article
Volume 15:04, 2024

Journal of Forensic Research

Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020Volume 11:2, 2020

Abstract
The proliferation of internet usage has led to an increase in deepfake attacks, posing significant threats to privacy and data security. Existing 
detection systems are continually challenged by increasingly sophisticated deepfake techniques. In this paper, we propose a novel method 
for detecting deepfake anomalies by focusing on the lip region of human faces in videos. This area is often subtle and difficult for humans to 
scrutinize. Our approach integrates the Minimum Covariance Determinant (MCD) Estimator with the SHA-256 hashing algorithm and RAID 
technology to identify even the slightest deepfake activities. By employing the Lip Shaping Technique, we evaluate the effectiveness of our 
method. Experimental results demonstrate the proposed method’s promising performance and its significant impact on frame processing speed 
due to the incorporation of optimized storage techniques.
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Introduction
The rapid advancement of technology has opened new avenues for 

cybercriminals to obtain sensitive data through unprotected networks and 
exploit system vulnerabilities. This technological progression has led to a 
surge in cyber attacks, including ransomware, phishing, Denial-of-Service 
(DoS), and zero-day exploits. Such attacks target exposed infrastructure and 
unprotected information, allowing hackers to gain unauthorized access to 
systems. The increased accessibility of technology has further exacerbated 
the prevalence of cyber attacks, providing hackers with more opportunities to 
exploit system and network flaws [1].

The use of videos and video conferencing has become pervasive 
across various domains such as education, politics, corporate meetings, 
and entertainment. The COVID-19 pandemic has significantly increased the 
number of users, leading to exponential growth in the usage of major video 
conferencing tools like Zoom, Webex, and Microsoft Teams. This surge in 
video communication has also led to a rise in digital exposure and video 
tampering. While tampering with photos requires professional tools like Adobe 
Photoshop, video manipulation is more challenging due to the need to edit a 
large number of frames [2].

However, advancements in techniques such as Generative Adversarial 
Networks (GANs) have simplified video manipulation. This has facilitated the 
development of the Deepfake technique, which involves replacing the faces of 
individuals in a video with computer-generated duplicates using GANs [3-5]. 

Deepfakes have been used for various illicit activities, including spreading 
hate speech, creating fake pornographic content, and inciting political unrest.

In recent years, the extraction of facial features, particularly the lips, 
has garnered significant interest. The shape and movement of the lips can 
convey the speaker’s emotional state and the message being delivered. 
Researchers have extensively studied the detection, modeling, and tracking 
of lips for various applications. These include enhancing automatic speech 
recognition through lip reading, synthesizing speaking faces for low bit-rate 
communication systems, aiding individuals with hearing loss, recognizing 
emotions for affective computing, extracting facial features for image and 
video database retrieval, creating photo fit kits, and identifying individuals 
for personal verification. Changes at the frame level in these features can be 
leveraged to detect deepfakes.

In early 2018, fake videos generated using the Deepfake method began 
to proliferate on social media platforms. The developer of this method, known 
as ”Deepfakes” on Reddit, utilized TensorFlow, search engines, and publicly 
available videos to create computer-generated faces that replace real faces 
in videos frame-by-frame [6,7]. This malicious use of Deepfake technology 
has led to political turmoil, the spread of hate speech, and the creation of fake 
celebrity pornography [8], resulting in significant legal ramifications [9].

Digital Forensics (DF) plays a critical role in combating these illegal 
Deepfake activities and supporting digital crime investigations. In computer 
science and forensics, DF involves the identification, acquisition, processing, 
analysis and reporting of electronic data, whether at rest or in transit. With 
the rise in cyber crimes, DF has become more vital than ever, as it aids in 
identifying and tracking cybercriminals. Forensic professionals are crucial in 
the reporting and prosecution of these crimes.

Our research introduces an innovative technique for detecting deepfakes 
using a color hashing method based on edge detection, specifically targeting 
the lip region with the Minimum Covariance Determinant (MCD) Estimator 
[10]. Our approach is structured into four sequential phases:

Frame extraction and edge detection: Frames are extracted from the 
input video file using object edge detection. Each frame is secured using a 
robust hashing algorithm to ensure data integrity and facilitate efficient frame-
level analysis. Edge detection helps in isolating the lip region by highlighting 
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the contours and boundaries of the lips, which are critical for subsequent 
analysis.

Pixel modification: The Photoshop Liquify tool is employed to make 
subtle modifications to specific regions of the image. This involves retrieving 
the lip region using a boundary marker and making minute changes to the 
pixel colors. These modifications help in enhancing the distinct features of the 
lips, making it easier to detect any anomalies or inconsistencies introduced 
by deepfake techniques.

Lip segmentation and analysis: The Minimum Covariance Determinant 
(MCD) Estimation technique is used for lip segmentation. This statistical 
method is robust to outliers and helps in capturing the natural variations 
in lip movements. By analyzing the segmented lip regions across multiple 
frames, we can identify patterns and deviations that are indicative of deepfake 
manipulations. This phase involves a detailed examination of lip movements, 
shapes, and their consistency throughout the video.

Abnormality detection: The final phase focuses on detecting subtle and 
hard-to-detect anomalies within the video file. By comparing the analyzed lip 
movements and shapes against a baseline of genuine videos, we can identify 
discrepancies that suggest deepfake activities. Advanced machine learning 
algorithms and anomaly detection techniques are applied to highlight even 
the smallest inconsistencies, ensuring high accuracy in deepfake detection.

This method demonstrates promising results in identifying deepfake 
activities and significantly enhances frame processing speed through 
optimized storage techniques. The integration of robust statistical methods 
and advanced edge detection algorithms provides a comprehensive approach 
to detecting deepfakes, making it a valuable tool in the field of digital forensics 
and cyber security.

The article is structured as follows: Section 2 reviews the initial 
investigation of relevant research papers. Section 3 outlines the problem 
statement and provides a detailed discussion of our proposed methodology for 
creating and identifying deepfakes. Section 4 presents the assessment of our 
technique, including findings and discussions. Finally, Section 5 concludes 
our work.

Related works
Deepfakes are created using advanced processes that improve daily, 

making them exceedingly difficult for the human eye to detect. Initially, these 
doctored videos were intended for entertainment purposes, but they have 
steadily infiltrated mainstream media. Now, deepfakes are increasingly being 
used for malicious purposes, such as spreading hate messages, inciting 
political unrest, defaming individuals, and creating false pornographic videos 
of celebrities. These doctored videos are pervasive across news broadcasts, 
YouTube, Facebook, Instagram, and other social media platforms.

One of the most notable instances of deepfake technology is the digital 
resurrection of the late actor Peter Cushing in Star Wars: Rogue One. Using 
deepfake technology, filmmakers were able to recreate Cushing’s likeness 
despite his passing in 1994. This process, known as ”Digital Resurrection,” 
is also referred to as ”Digital Preservation” when used to capture and archive 
well-known faces from various angles for future use. Another prominent 
example is the rejuvenation of Samuel L. Jackson in Captain America, where 
deepfake technology was used to present a younger version of the actor [11].

Deepfakes have also been employed by foreign and political actors to 
manipulate public opinion during elections. Several deepfake videos of world 
leaders have surfaced, aiming to incite violence or sway public sentiment. 
Notable examples include a video of former President Donald Trump making 
inflammatory statements [12], a manipulated speech by former President 
Barack Obama [13], and fabricated conversations between Vladimir Putin and 
Kim Jong-un [14], among others.

To counteract these threats, various integrity analysis techniques have 
been developed to assess the authenticity of videos and images. These 
techniques can be broadly categorized into feature-based [15,16] and 
Convolutional Neural Network (CNN)-based approaches [17,18]. Digital media 

forensics experts have extensively studied both approaches. Most proposed 
video forensic solutions focus on detecting manipulations such as missing 
or duplicated frames or copymove manipulations, which require minimal 
computational resources. One method for identifying face modifications 
involves distinguishing computer-generated faces from naturally occurring 
ones [19,20]. Using two deep CNNs, altered faces can be identified 
biometrically [21]. Another technique involves employing a two-stream 
network to detect two distinct face-swapping modifications [22].

The Closed Eyes in the Wild (CEW) Dataset, containing 1,193 photos, 
was compiled by the authors of [7]. They first located the face areas using a 
face detector and then aligned the face regions to a unified spatial coordinate 
space using a face alignment method. By removing the surrounding 
rectangular portions of the landmarks related to the eye contours, a new 
series of input frames was produced. The Long-term Recurrent Convolutional 
Networks (LRCN) model comprises three components: feature extraction, 
sequence learning and state prediction. The input eye area is transformed 
into distinguishing features and used in CNN implementation. The extracted 
features are fed into a Recurrent Neural Network (RNN) with Long Short-Term 
Memory (LSTM) cells for the sequence learning process. In the final prediction 
step, the output of each RNN neuron is passed to a fully connected layer of the 
neural network. This layer uses the LSTM output to predict the likelihood of the 
eyes being open or closed, represented by 0 and 1, respectively.

The authors of Hussain S, Paarth N, Malhar J and Farinaz K, et al. focus 
on evaluating the vulnerability of deepfake detection systems to adversarial 
examples. They propose a comprehensive evaluation framework to assess 
the robustness of deepfake detection systems against adversarial attacks. 
The study investigates different attack strategies and generates adversarial 
examples specifically designed to deceive deepfake detectors. These 
adversarial examples aim to manipulate the input data to mislead the 
detection system into misclassifying a deepfake as genuine or vice versa. The 
experimental results demonstrate that deepfake detection models are indeed 
vulnerable to adversarial attacks. The adversarial examples successfully 
bypass the detection systems, leading to misclassifications. The findings 
highlight the need for more robust and resilient deepfake detection techniques 
to combat the growing threat of adversarial deepfakes.

In another study, the authors [23] included 300 videos from the Hollywood 
Human Actions (HOHA) dataset [24] along with 300 deepfake videos from 
various hosting services. These videos were pre-processed by scaling each 
frame to 299 × 299 and removing the channel mean from each channel. An 
optimizer was used for end-to-end training of the entire model with a learning 
rate of 1e-5 and a decay of 1e-6, sampling subsequences of a specific length. 
The features of each frame were generated by a CNN, concatenated across 
several consecutive frames, and then passed through an Inception v3 model 
minus the fully connected layer at the top. Finally, an LSTM was used to 
analyze the features, enhancing the detection of deepfakes.

Overall, these studies highlight the ongoing advancements and challenges 
in deepfake detection. The continuous development of sophisticated deepfake 
techniques necessitates the parallel evolution of detection methods to ensure 
the integrity and authenticity of digital media.

Problem statement and methodology
Our literature review has revealed significant discrepancies between the 

frames of faces processed during the creation of deepfakes [17-23]. Notably, 
the referenced research often overlooks the lip region within these frames. 
This oversight is critical because the lip region is particularly complex and 
dynamic, making it a prime candidate for detecting inconsistencies introduced 
by deepfake techniques [25-28].

Deepfake videos typically involve sophisticated methods that manipulate 
facial features to create highly realistic yet entirely fabricated images [29,30]. 
While many current detection methods focus on broader facial features, they 
may miss subtle discrepancies that occur specifically in the lip region. The 
lip movements, shapes, and color transitions in genuine videos have unique 
characteristics that can be difficult to replicate accurately in deepfakes. 
By concentrating on these subtle lip region details, we can exploit these 
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discrepancies to determine the authenticity of a video and identify deepfakes 
more effectively.

The lip region is crucial for several reasons:
1.	 High detail and movement: The lips are involved in intricate 

movements and changes in shape and color as a person speaks. 
These dynamic changes are challenging for deepfake algorithms to 
reproduce consistently across frames.

2.	 Speech synchronization: Accurate lip-syncing is difficult to achieve, 
especially in videos where the audio does not match the manipulated 
video frames. Inconsistent lip movements can serve as a tell-tale sign 
of tampering.

3.	 Facial expressions: The lips play a significant role in conveying 
emotions and expressions. Any anomalies in these expressions can 
indicate manipulation.

4.	 Color and texture: The texture and color variations in the lips are 
complex. Deepfake techniques may struggle to replicate these 
nuances accurately, leading to detectable artifacts.

By focusing our detection efforts on the lip region, we develop a more 
precise and reliable method for identifying deepfakes. This approach leverages 
the inherent difficulties in replicating the detailed and dynamic nature of the 
lips, making it harder for deepfake algorithms to produce convincing results. 
Consequently, this method enhances our ability to detect deepfake videos, 
contributing to improved security and trustworthiness in digital media.

In this work, we present a novel technique that combines our previous 
boundary-based image color hashing method [2] with Minimum Covariance 
Determinant (MCD) Estimation for Lip Segmentation. This integrated 
approach aims to detect subtle and previously undetectable face anomalies 
in deepfake videos. The implementation of this method is divided into four 
distinct phases, with a sequential process workflow. The overall process is 
illustrated in Figure 1.

Phase 1: Frame extraction and edge detection: The first phase involves 
extracting frames from the input video file using an object edge detection 
method. This technique isolates the contours and boundaries of objects within 
the frames, focusing specifically on the facial region. Each frame is then 
secured using a robust hashing algorithm. This hashing process ensures the 
integrity and authenticity of the frames, providing a tamper-evident baseline 
for the subsequent analysis.

Phase 2: Pixel color adjustment and boundary marking: In the 
second phase, we make extremely small adjustments to pixel colors within a 
specific area of the image, particularly the lip region. This region is precisely 
identified using a boundary marker technique. Once the lip region is marked, 
the Photoshop Liquify tool is used to subtly modify the pixel colors. These 
minute changes enhance the distinct features of the lips, making it easier 
to detect any deepfake-induced anomalies. The modifications are minimal to 
ensure they do not introduce significant alterations that could affect the overall 
analysis.

Phase 3: Lip segmentation and analysis using mcd estimation: 
The third phase integrates the Minimum Covariance Determinant (MCD) 
Estimation for Lip Segmentation. This robust statistical method is effective at 
capturing the natural variations in lip movements and shapes. By segmenting 
the lip regions in each frame and applying MCD estimation, we can model the 
normal behavior and appearance of lips. This detailed segmentation allows us 
to identify patterns and deviations that may indicate deepfake manipulations. 
The analysis includes tracking lip movements across multiple frames and 
comparing them to a baseline of genuine lip movements.

Phase 4: Anomaly detection: The final phase focuses on detecting 
subtle and hard-to-detect anomalies within the video file. This involves 
comparing the analyzed lip movements and shapes against the established 
baseline of genuine videos. Advanced machine learning algorithms and 
anomaly detection techniques are applied to highlight even the smallest 
inconsistencies that suggest deepfake activities. By focusing on the lip region, 

which is often manipulated in deepfakes, our method ensures a higher level 
of scrutiny and accuracy in detection. The process is designed to identify 
discrepancies that are typically unnoticeable to the human eye, providing a 
robust solution for deepfake detection.

The integration of these phases into a cohesive workflow enables a 
comprehensive approach to detecting deepfakes. By targeting the lip region 
and combining robust statistical methods with advanced edge detection 
algorithms, this technique enhances the detection of deepfake anomalies. 
This approach is valuable in digital forensics and cybersecurity, offering a 
higher level of accuracy and reliability in verifying the authenticity of digital 
media. The overall flow of the implemented work is as shown in (Figure 1).

This integrated method not only leverages the inherent difficulties in 
replicating the detailed and dynamic nature of the lips but also ensures that 
even the most subtle anomalies are detected. This comprehensive approach 
significantly enhances our ability to detect deepfakes, thereby contributing to 
improved security and trustworthiness in digital media.

Phase 1: Frame extraction and edge detection
 In Phase 1 of our methodology, we establish a robust setup for capturing 

and processing video frames to initiate the deepfake detection process. This 
phase integrates advanced hardware and software components tailored for 
real-time video analysis and secure data handling.

Hardware configuration
Camera: We use the Logitech Brio 4k webcam, known for its high-

definition video capture capabilities, crucial for real-time detection of facial 
boundaries and features.

Processing unit: Connected to a DELL XPS 15 GPU series laptop, our 
setup leverages powerful computational capabilities essential for efficient 
video frame processing and analysis.

Software and platform
Operating system: Ubuntu 22.10 serves as our chosen platform, ensuring 

reliability and compatibility throughout the deepfake detection framework.

Application framework: Our approach utilizes an opensource application 
framework designed for seamless orchestration and management of video 
processing operations:

Live video streaming: The framework facilitates realtime streaming and 
processing of video feeds from the webcam, enabling continuous monitoring 
of facial features.

Django integration: Powered by Django, the framework provides 
comprehensive control over video file operations, including functionalities like 
zoom, resolution adjustments, and format handling. This integration enhances 
flexibility in handling diverse video inputs.

MP4 video library module: Integrated through an API, this module 
enhances face detection capabilities under various settings, augmenting the 
robustness of our detection system (Figure 2).

Implementation details: Customized Python scripts within the framework 
execute the following critical operations:

Live video reading: Python code segments efficiently read and process 
live video streams using optimized library functions, as shown in Figure 2.

Figure 1. Complete process diagram for lip segment anomaly detection.
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Frame extraction and processing: Advanced image processing 
techniques in OpenCV, such as rescaling, delineation, transcription, and 
rendition, ensure enhanced clarity and detail in each extracted frame (Figure 3).

Frame security with sha-256 hashing: Each processed video frame 
undergoes SHA-256 hashing (Figure 4), a robust cryptographic algorithm 
known for its security and integrity preservation. This step generates unique 
hash values for each frame, enabling reliable detection of tampering or 
unauthorized alterations (Figure 4). 

The SHA-256 algorithm computes the hash value H for a video frame F 
as:

H(F) = SHA-256(F)

where SHA-256 represents the cryptographic hashing function applied 
to frame F.

Metadata management
Database integration: Metadata associated with each hashed frame, 

including hash values and sequence numbers, are securely stored and 
managed within a PostgreSQL database. This database serves as a secure 
repository for maintaining integrity verification data and facilitating real-time 
comparisons. The recorded metadata in the PostgreSQL database enables 
verification of frame integrity through hash value comparisons:

?

stored currentH(F ) = H(F )
Here, H(Fstored) and H(Fcurrent) denote the hash values stored in the database 

and computed for the current frame, respectively.

Phase 1 establishes a solid foundation for subsequent phases our 
deepfake detection methodology. By integrating cuttingedge hardware 
components, open-source software frameworks, and stringent cryptographic 
measures, this phase ensures robust video frame processing and integrity 
verification. The utilization of SHA-256 hashing and PostgreSQL database 
management enhances data security, making our approach highly effective in 
detecting subtle anomalies indicative of deepfake manipulations.

Phase 2: Pixel color adjustment and boundary marking
In Phase 2 of our methodology, we focus on refining video frames 

through meticulous pixel color adjustments and precise boundary marking. 
This segment is crucial for introducing imperceptible anomalies that evade 
detection by conventional human observation and basic investigative tools.

During this phase, a random video file is chosen to simulate anomalies. 
Within our application framework, all video frames are displayed as 
thumbnails, allowing for easy access and manipulation. Key parameters such 
as frame size, aspect ratio, frame rate, and pixel dimensions are provided, 
enabling detailed inspection and manipulation. Our custom application 
supports features like frame zooming, facilitating close examination of specific 
segments where subtle anomalies can be strategically introduced.

Using a boundary marker integrated into the application interface, a 
precise region of interest within the video frame is selected. This selected 
portion is then extracted and processed using advanced tools such as the 
Photoshop Liquify tool [26]. This tool is adept at making minute adjustments 
to pixel colors, ensuring alterations are virtually imperceptible to the naked 
eye. By delicately adjusting these pixels, we can create imperfections that 
mimic real-world video artifacts, challenging even sophisticated detection 
algorithms.

Following pixel adjustments, all processed video frames are securely 
stored within a Redundant Array of Independent Disks (RAID) system [27]. 
This system employs data striping across multiple disk containers to enhance 
storage efficiency and data redundancy. By distributing the data across 
multiple disks, RAID improves both performance and reliability, ensuring 
robust data management and retrieval capabilities (Figure 5).

To maintain data integrity and track potential anomalies, each processed 
video frame undergoes hash value computation using cryptographic methods. 
These hash values, computed using algorithms like SHA-256, serve as 
unique identifiers for each frame’s content. They are stored alongside frame 
in a PostgreSQL database, facilitating real-time verification and comparison 
(Figure 5). This ensures that any unauthorized modifications or tampering 
attempts are immediately detected and flagged for further investigation.

Phase 2 represents a critical step in our deepfake detection methodology, 
focusing on the precise manipulation of video frames to introduce subtle 
anomalies. By leveraging tools for pixel adjustment and boundary marking, 

Figure 2. Customized python code with library functions to read the live web video.

Figure 3. Frames created from the script.

Figure 4. SHA-256 python code.
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we enhance our ability to simulate realistic imperfections that challenge 
the detection capabilities of deepfake algorithms. The integration of RAID 
storage and cryptographic hash verification further strengthens our approach, 
ensuring robust data integrity and detection accuracy. This comprehensive 
methodology underscores our commitment to advancing deepfake detection 
in digital media forensics, aiming to mitigate the risks posed by increasingly 
sophisticated video manipulation techniques.

Phase 3: Lip segmentation and analysis using Minimum Co-
variance Determinant (MCD) estimation

In Phase 3 of our methodology, we leverage the power of Minimum 
Covariance Determinant (MCD) Estimation for precise lip segmentation and 
analysis. This statistical method is robust against outliers and effectively 
captures the natural variations in lip movements and shapes, crucial for 
detecting anomalies indicative of deepfake manipulations.

The Minimum Covariance Determinant (MCD) method is utilized to 
accurately segment lip regions within each video frame. This technique 
identifies the central tendency of the lip features while filtering out anomalous 
data points that could distort the analysis. Mathematically, the MCD estimator 
seeks to minimize the determinant of the covariance matrix, effectively 
isolating the most representative subset of lip region data.

( ) ( )S
|S| k

MCD X  = arg min det
≤

∑

Where X represents the set of lip region data points, S is the subset of 
X with cardinality |S| ≤ k, and ΣS denotes the covariance matrix of subset S.

Each video frame undergoes detailed lip segmentation using the MCD 
technique. By segmenting and analyzing lip movements across frames, we 
establish a baseline of genuine lip behavior. Deviations from this baseline are 
scrutinized for patterns that may indicate deepfake anomalies. This analysis 
involves tracking subtle variations in lip shapes and movements, comparing 
them against established norms derived from genuine videos. Each frame’s 
lip region, processed using MCD estimation, is integrated into our application 
framework. These segmented lip regions are mapped to SHA-256 hashed 
video frames, ensuring data integrity and facilitating efficient storage and 
retrieval in disk arrays. This setup optimizes the speed of image reading 
and pixel comparison processes, critical for handling large volumes of video 
frames.

Phase 3 enhances our deepfake detection methodology by employing 
robust statistical techniques like MCD Estimation for accurate lip segmentation 
and anomaly detection. By focusing on lip movements and shapes, we 
strengthen our ability to discern between genuine and manipulated video 
content. This approach underscores our commitment to advancing digital 
media forensics, ensuring robust detection capabilities against evolving 
deepfake technologies.

Phase 4: Integrity verification using RAID and parity check
In Phase 4, we focus on verifying the integrity of lip segment video 

frames using RAID (Redundant Array of Independent Disks) and parity check 
techniques. This phase ensures robust detection of anomalies by comparing 
hashed values and conducting pixel-level integrity checks.

The RAID array configuration divides lip segment video frames across 
multiple hard disks, ensuring data redundancy and fault tolerance. Stripe 
parity is employed to enhance data reliability, where each frame’s hash value 
is appended with parity information. This setup enables efficient data retrieval 
and reconstruction even in the event of disk failures.

Upon accessing each lip segment video frame from the RAID array, 
the associated hash values, embedded with stripe parity, are retrieved and 
compared (Figure 5). Hash values typically range from 50 to 65, representing 
unique identifiers for each frame’s content.

During the integrity verification process, each pixel within lip segment 
video frame is meticulously examined. Pixels are extracted from the image 
region and stored in a list for comparison with the original frame’s pixel values. 
This pixel-by-pixel comparison ensures that any discrepancies between 
stored hash value and the current frame indicate potential anomalies, such 
as deepfake alterations.

Compare (Pstored, Pcurrent)

where Pstored represents the stored pixel values and Pcurrent denotes the 
current frame’s pixel values.

Anomalies are flagged if inconsistencies are detected during the pixel-
level comparison process. This indicates potential manipulations within the 
lip segment of the video frame. Our comprehensive approach in Phase 4 
underscores our commitment to ensuring data integrity and robust deepfake 
detection capabilities, leveraging RAID and parity check techniques for 
enhanced forensic analysis.

Phase 4 completes our deepfake detection methodology by focusing on 
rigorous integrity verification using RAID and parity checks. By integrating 
these advanced techniques, we reinforce our ability to detect subtle anomalies 
within lip segment video frames, thereby enhancing overall detection 
accuracy and reliability in digital media forensics. This holistic approach 
marks a significant advancement in combating the growing threat of deepfake 
technologies, safeguarding against malicious manipulations in multimedia 
content.

Results 
In this section, we present comprehensive results and discussions from 

our experimental evaluation of the proposed deepfake detection technique 
using lip segmentation and anomaly detection methods. The experiments 
were conducted on multiple datasets sourced from public repositories, 
meticulously prepared to ensure consistency and reliability in testing.

Experimental setup
We curated lip segment datasets from various public repositories, ensuring 

each dataset underwent thorough preprocessing to meet our experimental 
criteria. This involved standardizing factors such as facial coverage, density, 
and video duration to ensure consistency across all datasets. By trimming 
video files to a fixed length, we optimized frame processing and facilitated the 
efficient evaluation of our proposed technique.

The datasets included in our experiments are Obama Lip (5 samples), 
Trump Lip (14 samples), Biden Lip (16 samples), and Nicolas Cage Lip (27 
samples). Each dataset underwent preprocessing to ensure uniformity in face 
coverage, density, and video length. This preprocessing step was crucial 
for enabling consistent frame extraction and the controlled introduction of 
anomalies, essential for rigorous evaluation.

Experimental results
Table 1 summarizes the outcomes of our experiments, detailing the 

total number of samples, frames extracted per dataset, anomalies created, 

Figure 5. Lip segment video frame from RAID array and hash value is compared. 
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anomalies discovered, and the resulting efficiency percentage (Table 1). 

Table 2 provides a breakdown of the detection accuracy across different 
types of anomalies introduced into each dataset. This analysis categorizes 
anomalies based on their location within the lip segment and evaluates the 
technique’s effectiveness in detecting subtle manipulations (Table 2).

Additionally, Table 3 presents the computational performance metrics, 
including average processing time per frame which is the time taken to 
preprocess, hash, and analyze each individual frame in a video for anomalies, 
crucial for realtime deepfake detection and the overall throughput achieved 
during the evaluation which is the rate at which frames or videos are 
processed, indicating the system’s efficiency in detecting deepfake anomalies 
across varying dataset sizes and complexities. These metrics highlight the 
efficiency of the proposed technique in handling large-scale video datasets 
(Table 3).

Discussion
The high detection rates achieved by our method can be attributed to 

the integration of Minimum Covariance Determinant (MCD) estimation for 
robust lip segmentation. This statistical method effectively captures natural 
variations in lip movements and shapes, enabling accurate modeling of 
genuine lip behaviors. By comparing lip movements across frames to a 
baseline of authentic data, deviations indicative of deepfake anomalies are 
readily identified.

Moreover, our approach leverages RAID (Redundant Array of Independent 
Disks) arrays to enhance data management and processing efficiency. The 
RAID configuration ensures rapid access and retrieval of video frames, 
crucial for realtime anomaly detection in large-scale video datasets. This 
infrastructure optimally supports the intensive computational demands of 
deepfake detection, facilitating swift and accurate anomaly identification.

Future research directions will focus on refining our anomaly detection 
models to incorporate real-time processing capabilities and enhance scalability 
across broader datasets and diverse facial expressions [31-33]. Additionally, 
exploring advanced machine learning techniques for dynamic lip shape 
modeling and anomaly detection will further strengthen our methodology’s 
resilience against evolving deepfake techniques.

Our study contributes significantly to advancing digital forensics 
capabilities in combating deepfake threats. By integrating sophisticated 
lip segmentation and anomaly detection techniques, we provide a robust 
framework for safeguarding the authenticity and integrity of digital media 
in various applications, including security, media verification, and content 
authenticity assurance.

Conclusion
While advancements in deepfake detection have improved, criminals 

continue to exploit minute techniques to deceive content consumers. The 
sheer volume of internet data poses a significant challenge for real-time 
anomaly detection. This paper introduced a novel approach focused on 
identifying anomalies in lip movements, particularly imperceptible and ultra-
thin alterations.

Tested on public datasets, our method demonstrated strong capabilities 
in detecting subtle fakes that often evade human detection and basic forensic 
tools. Beyond standard anomalies, we created customized edits at the pixel 
and object levels to thoroughly assess our technique’s efficacy. By leveraging 
cutting-edge technologies such as SHA-256 hashing and RAID data 
processing systems, we have significantly enhanced the efficiency of anomaly 
detection within lip shape models. This approach can potentially be extended 
to other facial features like ears and noses with appropriate customizations 
based on specific object properties. Looking forward, our future research 
aims to explore gender-specific lip sync detection, considerations for skin 
melanin types, and integrating dental features for improved accuracy in lip 
area assessments.
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